Dynamic data reconciliation for enhancing the prediction performance of long short-term memory network

被引:1
|
作者
Zhu, Wangwang [1 ]
Zhu, Jialiang [1 ]
Yang, Qinmin [2 ]
Liu, Yi [1 ]
Zhang, Zhengjiang [3 ]
机构
[1] Zhejiang Univ Technol, Inst Proc Equipment & Control Engn, Hangzhou 310023, Peoples R China
[2] Zhejiang Univ, State Key Lab Ind Control Technol, Hangzhou 310027, Peoples R China
[3] Wenzhou Univ, Natl Local Joint Engn Res Ctr Digitalize Elect Des, Wenzhou 325035, Peoples R China
关键词
long short-term memory; measurement noise; data-driven modeling; dynamic data reconciliation;
D O I
10.1088/1361-6501/ad70d2
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In modern process industries, long short-term memory (LSTM) network is widely used for data-driven modeling. Constrained by measuring instruments and environments, the measured datasets are generally with Gaussian/non-Gaussian distributed measurement noise. The noisy datasets will impact the modeling accuracy of the LSTM network and decrease the prediction performance of it. Aiming at addressing prediction performance impairment of the LSTM network under noisy datasets with Gaussian/non-Gaussian distribution, this study introduces dynamic data reconciliation (DDR) both into LSTM network training and into LSTM network test. Results show that DDR improves not only the data quality based on noisy datasets and the training outputs via the Bayesian formula in the model training step, but also the prediction performance based on offline measured information and the test outputs. The implementation scheme of DDR for Gaussian and non-Gaussian distributed noise is purposely designed. The effectiveness of DDR on the LSTM model is verified in a numerical example and a case involving a set of shared wind power datasets.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Short-term wind speed prediction model based on long short-term memory network with feature extraction
    Zhongda Tian
    Xiyan Yu
    Guokui Feng
    Earth Science Informatics, 2025, 18 (4)
  • [22] Optimization of dynamic neural network performance for short-term traffic prediction
    Ishak, S
    Kotha, P
    Alecsandru, C
    INITIATIVES IN INFORMATION TECHNOLOGY AND GEOSPATIAL SCIENCE FOR TRANSPORTATION: PLANNING AND ADMINISTRATION, 2003, (1836): : 45 - 56
  • [23] Prediction of Multivariate Air Quality Time Series Data using Long Short-Term Memory Network
    Abu Bakar, Mohd After
    Ariff, Noratiqah Mohd
    Nadzir, Mohd Shahrul Mohd
    Wen, Ong Li
    Suris, Fatin Nur Afiqah
    MALAYSIAN JOURNAL OF FUNDAMENTAL AND APPLIED SCIENCES, 2022, 18 (01): : 52 - 59
  • [24] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Peng Chen
    Rong Wang
    Yibin Yao
    Hao Chen
    Zhihao Wang
    Zhiyuan An
    Journal of Geodesy, 2023, 97
  • [25] Prediction of well performance in SACROC field using stacked Long Short-Term Memory (LSTM) network
    Panja, Palash
    Jia, Wei
    McPherson, Brian
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 205
  • [26] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Chen, Peng
    Wang, Rong
    Yao, Yibin
    Chen, Hao
    Wang, Zhihao
    An, Zhiyuan
    JOURNAL OF GEODESY, 2023, 97 (05)
  • [27] Enhancing Biogeographical Ancestry Prediction with Deep Learning: A Long Short-Term Memory Approach
    Almansour, Fadwa
    Alshammari, Abdulaziz
    Alqahtani, Fahad
    FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 2, FONES-AIOT 2024, 2024, 1036 : 64 - 82
  • [28] Track Prediction of Tropical Cyclones Using Long Short-Term Memory Network
    Kumar, Sandeep
    Biswas, Koushik
    Pandey, Ashish Kumar
    2021 IEEE 11TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2021, : 251 - 257
  • [29] Application of bidirectional long short-term memory network for prediction of cognitive age
    Wong, Shi-Bing
    Tsao, Yu
    Tsai, Wen-Hsin
    Wang, Tzong-Shi
    Wu, Hsin-Chi
    Wang, Syu-Siang
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [30] Reactive Load Prediction Based on a Long Short-Term Memory Neural Network
    Zhang, Xu
    Wang, Yixian
    Zheng, Yuchuan
    Ding, Ruiting
    Chen, Yunlong
    Wang, Yi
    Cheng, Xueting
    Yue, Shuai
    IEEE ACCESS, 2020, 8 : 90969 - 90977