Gorenstein projective and weak Gorenstein flat modules

被引:0
|
作者
Dong, Jun [1 ]
Wei, Jie [1 ]
机构
[1] Lanzhou Inst Technol, Dept Basic Courses, Lanzhou, Peoples R China
关键词
Gorenstein projective module; relative global dimension; weak Gorenstein flat module;
D O I
10.1080/00927872.2024.2395988
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring such that all flat R-modules have finite strongly FP-injective dimension. We obtain that the class of all Gorenstein projective modules forms a left-hand class of complete and hereditary cotosion pair. As applications, we prove that the same behavior holds for the class of all weak Gorenstein flat modules. We also obtain a characterization of global Gorenstein flat-cotorsion dimension of rings in terms of weak Gorenstein flat modules.
引用
收藏
页码:983 / 993
页数:11
相关论文
共 50 条
  • [31] STRONGLY GORENSTEIN FLAT MODULES
    Ding, Nanqing
    Li, Yuanlin
    Mao, Lixin
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 86 (03) : 323 - 338
  • [32] STABILITY OF GORENSTEIN FLAT MODULES
    Bouchiba, Samir
    Khaloui, Mostafa
    GLASGOW MATHEMATICAL JOURNAL, 2012, 54 (01) : 169 - 175
  • [33] Notes on Gorenstein Flat Modules
    Yanjiong Yang
    Xiaoguang Yan
    Bulletin of the Iranian Mathematical Society, 2019, 45 : 337 - 344
  • [34] Notes on Gorenstein Flat Modules
    Yang, Yanjiong
    Yan, Xiaoguang
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2019, 45 (02) : 337 - 344
  • [35] Weak Gorenstein Cotorsion Modules
    Zhao, Liang
    Wei, Jiaqun
    Hu, Jiangsheng
    ALGEBRA COLLOQUIUM, 2018, 25 (02) : 265 - 276
  • [36] Strongly Gorenstein flat and Gorenstein FP-injective modules
    Yang, Chunhua
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (02) : 218 - 230
  • [37] Gorenstein projective, injective and flat modules over trivial ring extensions
    Mao, Lixin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025, 24 (02)
  • [38] Gorenstein projective, injective, flat modules and dimensions over polynomial rings
    Mao, Lixin
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024,
  • [39] GORENSTEIN INJECTIVE AND PROJECTIVE-MODULES
    ENOCHS, EE
    JENDA, OMG
    MATHEMATISCHE ZEITSCHRIFT, 1995, 220 (04) : 611 - 633
  • [40] Gorenstein projective modules and Frobenius extensions
    Wei Ren
    Science China Mathematics, 2018, 61 : 1175 - 1186