共 50 条
AN INVERSE PROBLEM WITH PARTIAL NEUMANN DATA AND Ln/2 POTENTIALS
被引:0
|作者:
Busch, Leonard
[1
]
Tzou, Leo
[1
]
机构:
[1] Univ Amsterdam, Amsterdam, Netherlands
基金:
澳大利亚研究理事会;
关键词:
Schrodinger equation;
calder & ouml;
n problem;
inverse problems;
pseudo- differential operators;
partial data;
Green's function;
CALDERON PROBLEM;
CAUCHY DATA;
D O I:
10.3934/ipi.2024030
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider a partial data Calderon problem for elliptic boundary value problems with unbounded coefficients. In particular, we will show that partial measurement of the Neumann-Dirichlet data for the operator triangle + q can uniquely determine q is an element of L-n/2(ohm). This requires that we construct an explicit Green's function for the conjugated Laplacian with specified Neumann boundary conditions. The explicit construction of the Green's function allows us to deduce L-p type estimates which would otherwise be out of reach using the previous methods for constructing such Green's functions for bounded potentials.
引用
收藏
页码:174 / 218
页数:45
相关论文