AN INVERSE PROBLEM WITH PARTIAL NEUMANN DATA AND Ln/2 POTENTIALS

被引:0
|
作者
Busch, Leonard [1 ]
Tzou, Leo [1 ]
机构
[1] Univ Amsterdam, Amsterdam, Netherlands
基金
澳大利亚研究理事会;
关键词
Schrodinger equation; calder & ouml; n problem; inverse problems; pseudo- differential operators; partial data; Green's function; CALDERON PROBLEM; CAUCHY DATA;
D O I
10.3934/ipi.2024030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a partial data Calderon problem for elliptic boundary value problems with unbounded coefficients. In particular, we will show that partial measurement of the Neumann-Dirichlet data for the operator triangle + q can uniquely determine q is an element of L-n/2(ohm). This requires that we construct an explicit Green's function for the conjugated Laplacian with specified Neumann boundary conditions. The explicit construction of the Green's function allows us to deduce L-p type estimates which would otherwise be out of reach using the previous methods for constructing such Green's functions for bounded potentials.
引用
收藏
页码:174 / 218
页数:45
相关论文
共 50 条