Anomalies of solute transport in flow of shear-thinning fluids in heterogeneous porous media

被引:0
|
作者
Omrani, Sina [1 ]
Green, Christopher [2 ]
Sahimi, Muhammad [3 ]
Niasar, Vahid [1 ]
机构
[1] Univ Manchester, Dept Chem Engn, Manchester M13 9PL, England
[2] CSIRO Energy, Clayton North, Vic 3169, Australia
[3] Univ Southern Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
基金
英国工程与自然科学研究理事会;
关键词
COMPLEX FLUIDS; DISPERSION; PORE;
D O I
10.1063/5.0213271
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Solute transport and mixing in heterogeneous porous media are important to many processes of practical applications. Most of the previous studies focused on solute transport in flow of Newtonian fluids, whereas there are many processes in which the phenomenon takes place in flow of a non-Newtonian fluid. In this paper, we develop a computational approach to evaluate and upscale dispersion of a solute in flow of a shear-thinning (ST) fluid in a heterogeneous porous medium. Our results indicate that the dispersivity is a non-monotonic function of the P & eacute;clet number and the shear rate, and this behavior is accentuated by the heterogeneity of the pore space and spatial correlations between the local permeabilities. As a result, solute transport in ST fluids deviates significantly from the same phenomenon in Newtonian fluids. Moreover, the shear-dependence of the dispersivity strongly influences the fate of solute transport in porous media at large length scales, including larger effluent concentration at the breakthrough point, which also occurs much faster than Newtonian fluids. To provide further evidence for the numerical findings, we compare dispersion in flow of a power-law fluid in a single tube with the same in a bundle of such tubes. Our results emphasize the shortcomings of the current theories of dispersion to account for the role of fluid rheology in solute mixing and spreading.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] The Dean instability for shear-thinning fluids
    Haines, Philip E.
    Denier, James P.
    Bassom, Andrew P.
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2013, 198 : 125 - 135
  • [32] Rapid wetting of shear-thinning fluids
    Yada, Susumu
    Bazesefidpar, Kazem
    Tammisola, Outi
    Amberg, Gustav
    Bagheri, Shervin
    PHYSICAL REVIEW FLUIDS, 2023, 8 (04)
  • [33] OPTIMAL CONTROL OF SHEAR-THINNING FLUIDS
    Arada, Nadir
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2012, 50 (04) : 2515 - 2542
  • [34] On the elastohydrodynamic analysis of shear-thinning fluids
    Jang, J. Y.
    Khonsari, M. M.
    Bair, S.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088): : 3271 - 3290
  • [35] Solute transport in divergent radial flow through heterogeneous porous media
    Indelman, P
    Dagan, G
    JOURNAL OF FLUID MECHANICS, 1999, 384 : 159 - 182
  • [36] Solute transport in divergent radial flow through heterogeneous porous media
    Faculty of Civil Engineering, Technion - Israel Inst. of Technol., Technion City, Haifa 32000, Israel
    不详
    J. Fluid Mech., (159-182):
  • [37] WAVE-PROPAGATION IN THE FLOW OF SHEAR-THINNING FLUIDS DOWN AN INCLINE
    WEINSTEIN, SJ
    AICHE JOURNAL, 1990, 36 (12) : 1873 - 1889
  • [38] A pore network modelling approach to investigate the interplay between local and Darcy viscosities during the flow of shear-thinning fluids in porous media
    de Castro, Antonio Rodriguez
    Goyeau, Benoit
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 590 : 446 - 457
  • [39] Numerical and experimental prediction of free surface flow of shear-thinning fluids
    Lobovsky, L.
    Bublik, O.
    Heidler, V
    Vimmr, J.
    COMPUTERS & FLUIDS, 2021, 225
  • [40] EXPERIMENTAL STUDIES ON THE TAYLOR-COUETTE FLOW OF SHEAR-THINNING FLUIDS
    Kawaguchi, Tatsuya
    Tano, Yuki
    Saito, Takushi
    INTERNATIONAL JOURNAL OF GEOMATE, 2022, 23 (97): : 31 - 37