The effects of vacancy ordering on diffusion: a statistical study

被引:0
|
作者
Stotts, J. Carter [1 ]
Tang, Xiaochuan [2 ]
Thompson, Gregory B. [3 ,4 ]
Weinberger, Christopher R. [1 ,2 ]
机构
[1] Colorado State Univ, Sch Mat Sci & Engn, Ft Collins, CO 80523 USA
[2] Colorado State Univ, Dept Mech Engn, Ft Collins, CO USA
[3] Univ Alabama, Engn, Tuscaloosa, AL USA
[4] Univ Alabama, Alabama Mat Inst, Tuscaloosa, AL USA
关键词
short range order; long range order; correlation effects; diffusion; Ising model; kMC; Monte Carlo; MONTE-CARLO-SIMULATION; HIGH-ENTROPY ALLOYS; LONG-RANGE ORDER; ION DIFFUSION; MAGNETIC-SUSCEPTIBILITY; TRANSITION; DISORDER; MODEL; CARBIDES; POINT;
D O I
10.1088/1361-648X/ad7ac8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper we investigate the interconnection between vacancy-ordered phases and vacancy self-diffusion. Here, we investigate three ordered phases on a square lattice with energetics defined by two separate Hamiltonians. In the first case we used a classical antiferromagnetic Ising model Hamiltonian in order to generate a 'checkerboard' type ordered structure. In the second case, we used a modified Ising model with competing influence of second and third nearest-neighbors, which resulted in both 'hatch' and 'labyrinthine' structures, depending on concentration. To understand how vacancy-ordering affects diffusion, we determined the tracer diffusivity using rejection-free kinetic Monte Carlo and compared disordered and ordered structures. Finally, we developed an analytical model describing diffusion in the ordered 'checkerboard' structure and found that it was able to predict apparent activation energies in the ordered and disordered structures. Our results suggest that it is short-range order rather than long-range order that most significantly affects tracer diffusion.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] VACANCY ORDERING IN SC1-XS
    FRANZEN, HF
    TUENGE, RT
    EYRING, L
    JOURNAL OF SOLID STATE CHEMISTRY, 1983, 49 (02) : 206 - 214
  • [42] Vacancy ordering during selective oxidation of β-NiAl
    He, Yang
    Luo, Langli
    Sushko, Maria L.
    Liu, Can
    Baer, Donald R.
    Schreiber, Daniel K.
    Rosso, Kevin M.
    Wang, Chongmin
    MATERIALIA, 2020, 12
  • [43] VACANCY ORDERING IN GD1-XSE
    SIEGRIST, T
    LEPAGE, Y
    HOLTZBERG, F
    JOURNAL OF SOLID STATE CHEMISTRY, 1987, 68 (01) : 185 - 187
  • [44] SYMMETRY ASPECTS OF VACANCY ORDERING IN CUBIC SOLIDS
    FRANZEN, HF
    FOLMER, JCW
    ACTA CRYSTALLOGRAPHICA SECTION A, 1984, 40 : C132 - C132
  • [45] VACANCY ORDERING IN VN1-X
    ONOZUKA, T
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1978, 11 (APR) : 132 - 136
  • [46] OXYGEN VACANCY ORDERING AND THE INCOMMENSURATE STRUCTURE OF MULLITE
    BUTLER, BD
    WELBERRY, TR
    WITHERS, RL
    PHYSICS AND CHEMISTRY OF MINERALS, 1993, 20 (05) : 323 - 332
  • [47] Observation of vacancy ordering structure in GaP nanobelts
    Tsai, JS
    Chen, FR
    Kai, JJ
    Chen, CC
    Huang, RT
    Wang, MS
    Huang, GC
    Guo, GG
    Yu, MU
    JOURNAL OF APPLIED PHYSICS, 2004, 95 (04) : 2015 - 2019
  • [48] VACANCY DISTRIBUTION AND MAGNETIC ORDERING IN IRON SULFIDES
    OVANESYAN, NS
    TRUKHTAN.VA
    ODINETS, GY
    NOVIKOV, GV
    SOVIET PHYSICS JETP-USSR, 1971, 33 (06): : 1193 - +
  • [49] VACANCY ORDERING IN Y1-XSE
    KIM, SJ
    FRANZEN, HF
    JOURNAL OF THE LESS-COMMON METALS, 1988, 144 (01): : 117 - 121
  • [50] Vacancy ordering in substoichiometric zirconium carbide: A review
    Davey, Theresa
    Chen, Ying
    International Journal of Ceramic Engineering and Science, 2022, 4 (03): : 134 - 157