A feasible smoothing accelerated projected gradient method for nonsmooth convex optimization

被引:0
|
作者
Nishioka, Akatsuki [1 ]
Kanno, Yoshihiro [1 ,2 ]
机构
[1] Univ Tokyo, Dept Math Informat, Bunkyo Ku, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Math & Informat Ctr, Hongo 7-3-1,Bunkyo Ku, Tokyo 1138656, Japan
关键词
Smoothing method; Accelerated gradient method; Convergence rate; Structural optimization; Eigenvalue optimization;
D O I
10.1016/j.orl.2024.107181
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Smoothing accelerated gradient methods achieve faster convergence rates than that of the subgradient method for some nonsmooth convex optimization problems. However, Nesterov's extrapolation may require gradients at infeasible points, and thus they cannot be applied to some structural optimization problems. We introduce a variant of smoothing accelerated projected gradient methods where every variable is feasible. The O ( k - 1 log k ) convergence rate is obtained using the Lyapunov function. We conduct a numerical experiment on the robust compliance optimization of a truss structure. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability
    Fan Wu
    Wei Bian
    [J]. Journal of Optimization Theory and Applications, 2023, 197 : 539 - 572
  • [2] Smoothing Accelerated Proximal Gradient Method with Fast Convergence Rate for Nonsmooth Convex Optimization Beyond Differentiability
    Wu, Fan
    Bian, Wei
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2023, 197 (02) : 539 - 572
  • [3] A feasible directions method for nonsmooth convex optimization
    Herskovits, Jose
    Freire, Wilhelm P.
    Fo, Mario Tanaka
    Canelas, Alfredo
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2011, 44 (03) : 363 - 377
  • [4] A feasible directions method for nonsmooth convex optimization
    José Herskovits
    Wilhelm P. Freire
    Mario Tanaka Fo
    Alfredo Canelas
    [J]. Structural and Multidisciplinary Optimization, 2011, 44 : 363 - 377
  • [5] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, YI
    Iusem, AN
    Solodov, MV
    [J]. MATHEMATICAL PROGRAMMING, 1998, 81 (01) : 23 - 35
  • [6] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Ya. I. Alber
    A. N. Iusem
    M. V. Solodov
    [J]. Mathematical Programming, 1998, 81 : 23 - 35
  • [7] Spectral projected subgradient method for nonsmooth convex optimization problems
    Krejic, Natasa
    Jerinkic, Natasa Krklec
    Ostojic, Tijana
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (01) : 347 - 365
  • [8] Spectral projected subgradient method for nonsmooth convex optimization problems
    Nataša Krejić
    Nataša Krklec Jerinkić
    Tijana Ostojić
    [J]. Numerical Algorithms, 2023, 93 : 347 - 365
  • [9] A Stochastic Nesterov’s Smoothing Accelerated Method for General Nonsmooth Constrained Stochastic Composite Convex Optimization
    Ruyu Wang
    Chao Zhang
    Lichun Wang
    Yuanhai Shao
    [J]. Journal of Scientific Computing, 2022, 93
  • [10] A Stochastic Nesterov's Smoothing Accelerated Method for General Nonsmooth Constrained Stochastic Composite Convex Optimization
    Wang, Ruyu
    Zhang, Chao
    Wang, Lichun
    Shao, Yuanhai
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (02)