Full-wave simulations on helicon and parasitic excitation of slow waves near the edge plasma

被引:2
|
作者
Kim, E. -H [1 ,2 ]
Ono, M. [1 ]
Shiraiwa, S. [1 ]
Bertelli, N. [1 ]
Poulos, M. [1 ,4 ]
Van Compernolle, B. [3 ]
Bortolon, A. [1 ]
Pinsker, R. I. [3 ]
机构
[1] Princeton Univ, Princeton Plasma Phys Lab, Princeton, NJ 08540 USA
[2] Andrews Univ, Dept Phys, Berrien Springs, MI 49104 USA
[3] Gen Atom, San Diego, CA 92186 USA
[4] Univ Calif Los Angeles, Los Angeles, CA 90095 USA
关键词
LOWER-HYBRID WAVES; CURRENT DRIVE; GENERATION; ANTENNA; DESIGN;
D O I
10.1063/5.0222413
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Helicon waves are thought to be promising in various tokamaks, such as DIII-D, because they can penetrate reactor-grade high-density cores and drive the off-axis current with higher efficiency. In the frequency regime similar to 476 MHz, both slow electrostatic and fast electromagnetic helicon waves can coexist in DIII-D. If the antenna parasitically excites the slow mode, these waves can propagate along the magnetic field line into the scrape-off layer (SOL). Although the importance of the misalignment of the Faraday screen and the electron density in the SOL on the excitation and propagation of slow modes is well known, the conditions for minimizing slow mode excitation have yet to be optimized. Using the Petra-M simulation code in the 2D domain, we analyze the effects of the misalignment of the antenna in the poloidal direction, the misalignment of the Faraday screen in the toroidal direction, and the density in front of the antenna on slow mode generation. Our results suggest that the misalignment of the Faraday screen is a critical factor in reducing the slow mode and that the misalignment angle should be below similar to 5 degrees to minimize the slow wave excitation. When the electron density is higher than 3.5x10(18 )m(-3) in the SOL, the generation of the slow mode from the antenna is minimized and unaffected by the misalignment of the Faraday screen.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Full-wave simulation of microstrip line with short-circuited edge
    Chramiec, J
    Kieda, R
    Kitlinski, M
    MIKON-2004, VOL 1, CONFERENCE PROCEEDINGS, 2004, : 222 - 224
  • [42] Edge fringe approach for the full-wave solution of large finite arrays
    Neto, A
    Maci, S
    Sabbadini, M
    Vecchi, G
    IEEE ANTENNAS AND PROPAGATION SOCIETY INTERNATIONAL SYMPOSIUM 1997, VOLS 1-4, 1997, : 1074 - 1077
  • [43] Full-wave simulations on ultrashort-pulse reflectometry for helical plasmas
    Hojo, H
    Fukuchi, A
    Itakura, A
    Mase, A
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2004, 75 (10): : 3813 - 3815
  • [44] Simulations of NBI-ICRF synergy with the full-wave TORIC package
    Bilato, R.
    Brambilla, M.
    Horton, L. D.
    Maggi, C. F.
    Stober, J.
    RADIO FREQUENCY POWER IN PLASMAS, 2009, 1187 : 81 - 84
  • [45] Hybrid Method for Full-Wave Simulations of Forests at L-Band
    Gu, Weihui
    Tsang, Leung
    Colliander, Andreas
    Yueh, Simon
    IEEE ACCESS, 2022, 10 : 105898 - 105909
  • [46] PARAMETRIC EXCITATION OF ELECTRON-ACOUSTIC WAVES BY HELICON WAVES IN MAGNETISED SEMICONDUCTOR-PLASMA.
    Guha, S.
    Basu, C.
    1985, (127):
  • [47] AORSA full wave calculations of helicon waves in DIII-D and ITER
    Lau, C.
    Jaeger, E. F.
    Bertelli, N.
    Berry, L. A.
    Green, D. L.
    Murakami, M.
    Park, J. M.
    Pinsker, R. I.
    Prater, R.
    NUCLEAR FUSION, 2018, 58 (06)
  • [48] Full-wave analysis of the excitation of magnetostatic-surface waves by a semi-infinite microstrip transducer -: Theory and experiment
    Freire, MJ
    Marqués, R
    Medina, F
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2003, 51 (03) : 903 - 907
  • [49] Full-wave anelastic and compressible Fourier methods for gravity waves in the thermosphere
    Knight, H. K.
    Broutman, D.
    Eckermann, S. D.
    WAVE MOTION, 2022, 110
  • [50] Full-wave modeling of Fabry-Perot resonator in millimeter waves
    Piksa, Petr
    Zvanovec, Stanislav
    Cerny, Petr
    Mazanek, Milos
    PROCEEDINGS OF THE 14TH CONFERENCE ON MICROWAVE TECHNIQUES: COMITE 2008, 2008, : 211 - 214