QL-YOLOv8s: Precisely Optimized Lightweight YOLOv8 Pavement Disease Detection Model

被引:1
|
作者
Guo, Jinbo [1 ]
Wang, Shenghuai [1 ]
Chen, Xiaohui [1 ]
Wang, Chen [1 ]
Zhang, Wei [1 ]
机构
[1] Hubei Univ Automot Technol, Sch Mech Engn, Shiyan 442002, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
基金
中国国家自然科学基金;
关键词
Accuracy; YOLO; Feature extraction; Road traffic; Object recognition; Surface cracks; Defect detection; Road transportation; Maintenance engineering; Road surface disease detection; lightweight; YOLOv8; MLCA; DWR; BiFPN; NETWORK;
D O I
10.1109/ACCESS.2024.3452129
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Detecting road surface defects is essential for highway maintenance, yet the application of most models is hindered by the limitations of existing detection resources. To address this challenge, we have enhanced YOLOv8, introducing a lightweight detection model dubbed QL-YOLOv8s. In this study, we employ the DIoU loss function to optimize bounding box regression, taking into account both the size of overlapping areas and the distance between the centers of boxes, thereby handling targets of various sizes and shapes with improved localization accuracy. Moreover, a lightweight Mixed Local Channel Attention (MLCA) has been incorporated into the backbone of the model, aimed at enhancing the recognition capabilities in complex environments without in-creasing the model's burden. Furthermore, by integrating the Dilated Wrapping Residual (DWR) module and C2f into BiFPN, we developed a new neck structure, BiFPN-D, and introduced a lightweight detection head, Detect-T3, thus augmenting the model's feature perception capacity, reducing parameter count, and boosting detection speed. Based on the RDD 2022 public dataset, QL-YOLOv8s demonstrated a reduction in parameter count and size by 37%, a decrease in com-putational requirements by 19%, and achieved an average precision of mAP0.5 at 95.8%. These results underscore the contribution and practical value of our method to the technology of automatic road defect detection.
引用
收藏
页码:128392 / 128403
页数:12
相关论文
共 50 条
  • [21] Improved Lightweight Military Aircraft Detection Algorithm of YOLOv8
    Liu, Li
    Zhang, Shuo
    Bai, Yu’ang
    Li, Yujian
    Zhang, Chuxia
    Computer Engineering and Applications, 2024, 60 (18) : 114 - 125
  • [22] Improved Lightweight YOLOv8 Model for Rice Disease Detection in Multi-Scale Scenarios
    Wang, Jinfeng
    Ma, Siyuan
    Wang, Zhentao
    Ma, Xinhua
    Yang, Chunhe
    Chen, Guoqing
    Wang, Yijia
    AGRONOMY-BASEL, 2025, 15 (02):
  • [23] A lightweight model for echo trace detection in echograms based on improved YOLOv8
    Ma, Jungang
    Tong, Jianfeng
    Xue, Minghua
    Yao, Junfan
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [24] Lightweight construction safety behavior detection model based on improved YOLOv8
    Kan Huang
    Mideth B. Abisado
    Discover Applied Sciences, 7 (4)
  • [25] YOLOv8-RMDA: Lightweight YOLOv8 Network for Early Detection of Small Target Diseases in Tea
    Ye, Rong
    Shao, Guoqi
    He, Yun
    Gao, Quan
    Li, Tong
    SENSORS, 2024, 24 (09)
  • [26] Improved Lightweight Bearing Defect Detection Algorithm of YOLOv8
    Yao, Jingli
    Cheng, Guang
    Wan, Fei
    Zhu, Deping
    Computer Engineering and Applications, 2024, 60 (21) : 205 - 214
  • [27] Improved YOLOv8 Lightweight UAV Target Detection Algorithm
    Hu, Junfeng
    Li, Baicong
    Zhu, Hao
    Huang, Xiaowen
    Computer Engineering and Applications, 2024, 60 (08) : 182 - 191
  • [28] Lightweight outdoor drowning detection based on improved YOLOv8
    Liu, Xiangju
    Shuai, Tao
    Liu, Dezeng
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (02)
  • [29] LSKA-YOLOv8: A lightweight steel surface defect detection algorithm based on YOLOv8 improvement
    Tie, Jun
    Zhu, Chengao
    Zheng, Lu
    Wang, Haijiao
    Ruan, Chongwei
    Wu, Mian
    Xu, Ke
    Liu, Jiaqing
    ALEXANDRIA ENGINEERING JOURNAL, 2024, 109 : 201 - 212
  • [30] BL-YOLOv8: An Improved Road Defect Detection Model Based on YOLOv8
    Wang, Xueqiu
    Gao, Huanbing
    Jia, Zemeng
    Li, Zijian
    SENSORS, 2023, 23 (20)