Effect of separator coating layer thickness on thermal and electrochemical properties of lithium-ion secondary batteries

被引:0
|
作者
Jung, Min-Gi [1 ]
Oh, Ji-Hui [2 ,3 ]
Hyun, Da-Eun [2 ]
Kim, Yong-Nam [2 ]
Han, Joo-Young [3 ]
Shin, Weon Ho [3 ]
Jeong, Kyoung-Hoon [4 ]
Lee, Dong-Won [2 ]
Kim, Sunghoon [5 ]
Oh, Jong-Min [3 ]
机构
[1] Hanyang Univ, Dept Mat Sci & Chem Engn, Ansan 15588, South Korea
[2] Korea Testing Lab, Mat Technol Ctr, Seoul 08389, South Korea
[3] Kwangwoon Univ, Dept Elect Mat Engn, Seoul 01897, South Korea
[4] Daehan Ceram Co Ltd, Tech Dept, Seoul 58452, South Korea
[5] Dong Eui Univ, Ctr Brain Busan Plus Program 21, Dept Appl Chem, Pusan 47227, South Korea
基金
新加坡国家研究基金会;
关键词
alpha-alumina; Thickness; Ceramic coated separator; Thermal stability; Lithium-ion battery; CERAMIC-COATED SEPARATORS; POLYETHYLENE SEPARATORS; CYCLING PERFORMANCE; PARTICLES; ENHANCEMENT; PENETRATION;
D O I
10.1007/s43207-024-00422-9
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study addresses the critical gap in understanding the quantitative relationship between the thickness of ceramic coatings on separators and the overall performance of lithium-ion batteries (LIBs). Through a comprehensive investigation into the effects of varying alumina coating thicknesses on polyethylene (PE) separators, we have elucidated the impact of single-sided and double-sided coatings on separator characteristics and, consequently, on cell performance. Our findings demonstrate that increasing the thickness of the single-sided alumina coating up to 4 mu m markedly enhances the mechanical and thermal stability of the separators. Also, we showed the superior thermal stability and electrochemical performance of 2 mu m double-sided coating layer compared to 4 mu m single-sided coating layer. Utilizing scanning electron microscopy, 3D shape analysis, and a suite of mechanical and electrochemical evaluations, we have detailed the positive ramifications of the alumina coating process. This study not only establishes a clear correlation between alumina coating thickness and separator performance but also advocates for an optimal double-side 2 mu m alumina coating. Such a configuration promises to advance the energy density and safety of LIBs, offering insights for future battery development and separator optimization.
引用
收藏
页码:1112 / 1122
页数:11
相关论文
共 50 条
  • [31] Bifunctional coating layer on Ni-rich cathode materials to enhance electrochemical performance and thermal stability in lithium-ion batteries
    Seenivasan, Manojkumar
    Jeyakumar, Juliya
    Wu, Yi-Shiuan
    Pham, Quoc-Thai
    Chern, Chorng-Shyan
    Hwang, Bing-Joe
    Yang, Chun-Chen
    COMPOSITES PART B-ENGINEERING, 2022, 242
  • [32] Interfacial properties of fullerene coated silicon film as an anode material for lithium secondary batteries: effect of coating layer thickness
    Arie, Arenst Andreas
    Lee, Joong Kee
    BATTERIES AND ENERGY TECHNOLOGY (GENERAL) - 217TH ECS MEETING, 2010, 28 (30): : 119 - 126
  • [33] Thermal and electrochemical stability of organosilicon electrolytes for lithium-ion batteries
    Chen, Xin
    Usrey, Monica
    Pena-Hueso, Adrian
    West, Robert
    Hamers, Robert J.
    JOURNAL OF POWER SOURCES, 2013, 241 : 311 - 319
  • [34] A Glass Platelet Coating on Battery Electrodes and Its Use as a Separator for Lithium-Ion Batteries
    Schadeck, Ulrich
    Gerdes, Thorsten
    Krenkel, Walter
    Moos, Ralf
    JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, 2020, 17 (03)
  • [35] Bacterial cellulose nanofibrous membrane as thermal stable separator for lithium-ion batteries
    Jiang, Fengjing
    Yin, Lei
    Yu, Qingchun
    Zhong, Chunyan
    Zhang, Junliang
    JOURNAL OF POWER SOURCES, 2015, 279 : 21 - 27
  • [36] Effect of separator properties for the electrochemical-and safety-performances towards tabless 21,700 lithium-ion batteries
    Yang, Jun
    Xu, Lang
    Cheng, Ting
    Yang, Bin
    Qiao, Zhijun
    Ruan, Dianbo
    Wang, Yuzuo
    JOURNAL OF ENERGY STORAGE, 2025, 112
  • [37] A Composite Fiber Separator with Reversible Thermal Shutdown for Safety of Lithium-Ion Batteries
    Gao, Tingting
    Tian, Peng
    Yang, Yongyu
    Xu, Qianjin
    Pang, Hongchang
    Ye, Junwei
    Ning, Guiling
    ENERGY TECHNOLOGY, 2022, 10 (09)
  • [38] A flame retarding separator with improved thermal stability for safe lithium-ion batteries
    Woo, Jung-Je
    Nam, Sang Hoon
    Seo, Seok-Jun
    Yun, Sung-Hyun
    Kim, Won Bae
    Xu, Tongwen
    Moon, Seung-Hyeon
    ELECTROCHEMISTRY COMMUNICATIONS, 2013, 35 : 68 - 71
  • [39] Effect of Humidity on Properties of Lithium-ion Batteries
    Han, Xiao
    Xia, Saisai
    Cao, Jie
    Wang, Chris
    Chen, Ming-gong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2021, 16 (05): : 1 - 10
  • [40] Electrochemical Properties of Chemically Processed SiOx as Coating Material in Lithium-Ion Batteries with Si Anode
    Jeong, Hee-June
    Yang, Hyeon-Woo
    Yun, Kang-Seop
    Noh, Eul
    Jung, Sang-Chul
    Kang, Wooseung
    Kim, Sun-Jae
    SCIENTIFIC WORLD JOURNAL, 2014,