A machine learning-based predictive model for biliary stricture attributable to malignant tumors: a dual-center retrospective study

被引:0
|
作者
Yang, Qifan [1 ]
Nie, Lu [2 ]
Xu, Jian [1 ]
Li, Hua [3 ,4 ]
Zhu, Xin [1 ]
Wei, Mingwei [3 ,4 ]
Yao, Jun [1 ]
机构
[1] Jiangsu Univ, Dept Gastroenterol, Affiliated Peoples Hosp, Zhenjiang, Jiangsu, Peoples R China
[2] Jiangsu Univ, Wujin Hosp Affiliated, Dept Intervent Vasc, Changzhou, Peoples R China
[3] Youjiang Med Univ Nationalities, Affiliated Hosp, Dept Gen Surg, Baise, Peoples R China
[4] Key Lab Tumor Mol Pathol Baise, Baise, Peoples R China
来源
FRONTIERS IN ONCOLOGY | 2024年 / 14卷
关键词
malignant tumors; biliary stricture; risk factors; machine learning; predictive model; OBSTRUCTIVE-JAUNDICE; BILIRUBIN; DIAGNOSIS; CA19-9;
D O I
10.3389/fonc.2024.1406512
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background Biliary stricture caused by malignant tumors is known as Malignant Biliary Stricture (MBS). MBS is challenging to differentiate clinically, and accurate diagnosis is crucial for patient prognosis and treatment. This study aims to identify the risk factors for malignancy in all patients diagnosed with biliary stricture by Endoscopic Retrograde Cholangiopancreatography (ERCP), and to develop an effective clinical predictive model to enhance diagnostic outcomes.Methodology Through a retrospective study, data from 398 patients diagnosed with biliary stricture using ERCP between January 2019 and January 2023 at two institutions: the First People's Hospital affiliated with Jiangsu University and the Second People's Hospital affiliated with Soochow University. The study began with a preliminary screening of risk factors using univariate regression. Lasso regression was then applied for feature selection. The dataset was divided into a training set and a validation set in an 8:2 ratio. We analyzed the selected features using seven machine learning algorithms. The best model was selected based on the Area Under the Receiver Operating Characteristic (ROC) Curve (AUROC) and other evaluation indicators. We further evaluated the model's accuracy using calibration curves and confusion matrices. Additionally, we used the SHAP method for interpretability and visualization of the model's predictions.Results RF model is the best model, achieved an AUROC of 0.988. Shap result indicate that age, stricture location, stricture length, carbohydrate antigen 199 (CA199), total bilirubin (TBil), alkaline phosphatase (ALP), (Direct Bilirubin) DBil/TBil, and CA199/C-Reactive Protein (CRP) were risk factors for MBS, and the CRP is a protective factor.Conclusion The model's effectiveness and stability were confirmed, accurately identifying high-risk patients to guide clinical decisions and improve patient prognosis.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Machine learning-based predictive model for abdominal diseases using physical examination datasets
    Chen W.
    Zhang Y.
    Wu W.
    Yang H.
    Huang W.
    Computers in Biology and Medicine, 2024, 173
  • [42] A framework for energy optimization of distillation process using machine learning-based predictive model
    Park, Hyundo
    Kwon, Hyukwon
    Cho, Hyungtae
    Kim, Junghwan
    ENERGY SCIENCE & ENGINEERING, 2022, 10 (06) : 1913 - 1924
  • [43] Development and application of a machine learning-based predictive model for obstructive sleep apnea screening
    Liu, Kang
    Geng, Shi
    Shen, Ping
    Zhao, Lei
    Zhou, Peng
    Liu, Wen
    FRONTIERS IN BIG DATA, 2024, 7
  • [44] A MACHINE LEARNING-BASED PREDICTIVE MODEL FOR PROGRESSION OF KNEE OSTEOARTHRITIS FROM CLINICAL DATA
    Li, H. T.
    Chan, L.
    Wen, C.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S312 - S314
  • [45] Development and validation of a machine learning-based vocal predictive model for major depressive disorder
    Wasserzug, Yael
    Degani, Yoav
    Bar-Shaked, Mili
    Binyamin, Milana
    Klein, Amit
    Hershko, Shani
    Levkovitch, Yechiel
    JOURNAL OF AFFECTIVE DISORDERS, 2023, 325 : 627 - 632
  • [46] A machine learning-based predictive model of causality in orthopaedic medical malpractice cases in China
    Yang, Qingxin
    Luo, Li
    Lin, Zhangpeng
    Wen, Wei
    Zeng, Wenbo
    Deng, Hong
    PLOS ONE, 2024, 19 (04):
  • [47] Machine learning-based nomogram for 30-day mortality prediction for patients with unresectable malignant biliary obstruction after ERCP with metal stent: a retrospective observational cohort study
    Zongdong Zhu
    Kaixin Hu
    Fengqing Zhao
    Wen Liu
    Hongkun Zhou
    Zongliang Zhu
    Huangbao Li
    BMC Surgery, 23
  • [48] Machine learning-based nomogram for 30-day mortality prediction for patients with unresectable malignant biliary obstruction after ERCP with metal stent: a retrospective observational cohort study
    Zhu, Zongdong
    Hu, Kaixin
    Zhao, Fengqing
    Liu, Wen
    Zhou, Hongkun
    Zhu, Zongliang
    Li, Huangbao
    BMC SURGERY, 2023, 23 (01)
  • [49] Machine learning-based model for prediction of deep vein thrombosis after gynecological laparoscopy: A retrospective cohort study
    Chen, Xiao
    Hou, Min
    Wang, Dongxue
    MEDICINE, 2024, 103 (01) : E36717
  • [50] Development of a machine learning-based model for the prediction and progression of diabetic kidney disease: A single centred retrospective study
    Nayak, Sandhya
    Amin, Ashwini
    Reghunath, Swetha R.
    Thunga, Girish
    Acharya, U. Dinesh
    Shivashankara, K. N.
    Attur, Ravindra Prabhu
    Acharya, Leelavathi D.
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 190