INTEGRAL EQUATION WITH MAXIMA VIA FIBRE CONTRACTION PRINCIPLE

被引:0
|
作者
Ilea, Veronica [1 ]
Otrocol, Diana [2 ,3 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 M Kogalniceanu St, RO-400084 Cluj Napoca, Romania
[2] Tech Univ Cluj Napoca, 28 Memorandumului St, Cluj Napoca 400114, Romania
[3] Romanian Acad, Tiberiu Popoviciu Inst Numer Anal, POB 68-1, Cluj Napoca 400110, Romania
来源
FIXED POINT THEORY | 2024年 / 25卷 / 02期
关键词
Integral equation with maxima; existence and uniqueness; fixed point; weakly Picard operator; fibre contraction principle; Gronwall lemma; comparison lemma; FUNCTIONAL-DIFFERENTIAL EQUATIONS; STEP METHOD;
D O I
10.24193/fpt-ro.2024.2.10
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to emphasize the role of the fibre contraction principle in the study of the solution of integral equations with maxima in connection with the weakly Picard operator technique. The results complement and extend some known results given in the paper: I.A. Rus, Some variants of contraction principle in the case of operators with Volterra property: step by step contraction principle, Advances in the Theory of Nonlinear Analysis and its Applications, 3(2019), no. 3, 111-120. The last section is devoted to Gronwall lemma type results and comparison theorems.
引用
收藏
页码:601 / 610
页数:10
相关论文
共 50 条
  • [21] Solution of Nonlinear Integral Equation via Fixed Point of Cyclic αLψ-Rational Contraction Mappings in Metric-Like Spaces
    Hammad, Hasanen Abuelmagd
    De la Sen, Manuel
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2020, 51 (01): : 81 - 105
  • [22] Contraction Integral Equation for Three-Dimensional Electromagnetic Inverse Scattering Problems
    Zhong, Yu
    Xu, Kuiwen
    JOURNAL OF IMAGING, 2019, 5 (02):
  • [23] On the convergence of Lupa (p,q)-Bernstein operators via contraction principle
    Bin Jebreen, Haifa
    Mursaleen, Mohammad
    Ahasan, Mohd
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019,
  • [24] A New Contraction Principle via Fuzzy G-Simulation Functions
    Moussaoui, Abdelhamid
    Radenovic, Stojan
    Birgani, Omid Taghipour
    Melliani, Said
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2025, 43 : 10 - 10
  • [25] The principle of maxima and minima in animal learning
    Gengerelli, JA
    JOURNAL OF COMPARATIVE PSYCHOLOGY, 1931, 11 (03) : 193 - 236
  • [26] An Extension of the Contraction Principle
    J. Garcia
    Journal of Theoretical Probability, 2004, 17 : 403 - 434
  • [27] COMPLETENESS AND THE CONTRACTION PRINCIPLE
    BORWEIN, JM
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 87 (02) : 246 - 250
  • [28] An extension of the contraction principle
    Garcia, J
    JOURNAL OF THEORETICAL PROBABILITY, 2004, 17 (02) : 403 - 434
  • [29] F-contraction via (CLR)-property and application to integral equations
    Rashidi, Farah
    Shams, Maryam
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2021, 27 (03):
  • [30] A GENERALIZED CONTRACTION PRINCIPLE
    CHANDLER, RE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 113 - &