Supercapacitors have developed popularity as energy storage devices due to their high safety, superior affordability, and environmental sustainability. Phthalocyanines (Pcs) are one among the many metal-organic frameworks which have received minimal attention as an electrode material. Herein, the electrode material hyperbranched Ni-phthalocyanine (HDNiPc) intercalated with silk cotton carbon (SCW) obtained from Ceiba pentandra fruit has been explored for its supercapacitance property in different ratios. The electrode modification was carried out using the binder poly (vinyl alcohol)-tetraethyl orthosilicate (PVA-TEOS) cross-linked hybrid solution. The morphology of the composite was confirmed through physicochemical characterization like BET, SEM, and XRD, and electrochemical features were studied through cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS). The HDNiPc-SCW of 1:3 ratio has demonstrated superior specific capacitance of 230.94 F g(-1 )at 0.5 A g(-1) and good cyclic stability of 94.15% for over 5000 cycles. This work delivers a promising approach towards the development of supercapacitors using low-cost phthalocyanine/silk cotton carbon composite.