Low-cost, high-performance supercapacitor based on activated carbon electrode materials derived from baobab fruit shells

被引:146
|
作者
Mohammed, Asim A. [1 ,2 ]
Chen, Chao [1 ]
Zhu, Zhihong [1 ]
机构
[1] Cent China Normal Univ, Inst Nanosci & Nanotechnol, Coll Phys Sci & Technol, Wuhan 430079, Hubei, Peoples R China
[2] Univ Zalingei, Phys Dept, Fac Educ, Zalingei, Sudan
基金
中国国家自然科学基金;
关键词
Baobab fruit shell; Biomass; Porous carbon; All-solid-state supercapacitor; HIERARCHICAL POROUS CARBON; HIGH-ENERGY; EFFICIENT ELECTRODE; CHEMICAL ACTIVATION; HIGH CAPACITANCE; KOH ACTIVATION; BIOMASS CARBON; POMELO PEEL; FRAMEWORKS; STRATEGY;
D O I
10.1016/j.jcis.2018.11.103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Due to an effective synthesis strategy, two kinds of hierarchical porous activated carbons were derived via KOH and H3PO4 activation and carbonization processes from baobab fruit shells (BFSs) used as a green and low-cost biomass precursor. The physicochemical properties and the morphological structure of the baobab fruit shell derived carbons (BFSCs) were systematically studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectra, nitrogen adsorption/desorption isotherms and X-ray photoelectron spectroscopy (XPS) techniques. The biomass-derived activated carbons, BFSC1 (using KOH activation), and BFSC2 (using H3PO4 activation), obtained exhibit high specific capacitances of 233.48 F g(-1) and 355.8 F g(-1) at a current density of 1 A g(-1), respectively, due to their different surface structures and high specific surface areas. Furthermore, the as-assembled, flexible all-solid-state super capacitor devices based on the BFSC electrodes exhibit a high specific capacitance of 58.67 F g(-1) at 1 A g(-1) and a high energy density of 20.86 Wh kg(-1), at a power density of 400 W kg(-1). This facile route highlights the exciting possibility of utilizing waste baobab fruit shells to produce low-cost, green and high-performance carbon-based electrode materials for sustainable electrochemical energy storage systems. (C) 2018 Published by Elsevier Inc.
引用
收藏
页码:308 / 319
页数:12
相关论文
共 50 条
  • [1] Low-cost supercapacitor based on multi-walled carbon nanotubes and activated carbon derived from Moringa Oleifera fruit shells
    Palisoc, Shirley
    Marco Dungo, Joshua
    Natividad, Michelle
    HELIYON, 2020, 6 (01)
  • [2] Lignocellulose based Bio-waste Materials derived Activated Porous Carbon as Superior Electrode Materials for High-Performance Supercapacitor
    Mondal, Monojit
    Goswami, Dipak Kumar
    Bhattacharyya, Tarun Kanti
    JOURNAL OF ENERGY STORAGE, 2021, 34
  • [3] High-Performance Supercapacitor Electrode Materials from Cellulose-Derived Carbon Nanofibers
    Cai, Jie
    Niu, Haitao
    Li, Zhenyu
    Du, Yong
    Cizek, Pavel
    Xie, Zongli
    Xiong, Hanguo
    Lin, Tong
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (27) : 14946 - 14953
  • [4] Corncob-Derived Activated Carbon as Electrode Material for High-Performance Supercapacitor
    Dong, Lili
    Pan, Chenghao
    Ji, Yongfeng
    Ren, Suxia
    Lei, Tingzhou
    MATERIALS, 2024, 17 (17)
  • [5] Biomass-Derived Activated Carbon for High-Performance Supercapacitor Electrode Applications
    Merin, Pulikkottil
    Joy, P. Jimmy
    Muralidharan, M. N.
    Gopalan, E. Veena
    Seema, Ansari
    CHEMICAL ENGINEERING & TECHNOLOGY, 2021, 44 (05) : 844 - 851
  • [6] Lignin-Derived Activated Carbon as Electrode Material for High-Performance Supercapacitor
    Pan, Chenghao
    Ji, Yongfeng
    Ren, Suxia
    Lei, Tingzhou
    Dong, Lili
    MOLECULES, 2025, 30 (01):
  • [7] Synthesis and Characterization of Activated Carbon from Corncob for High-Performance Electrode Materials for Supercapacitor Applications
    Baskar, Gokulapriya
    Marimuthu, Selvapandiyan
    JOURNAL OF ELECTRONIC MATERIALS, 2025, : 3898 - 3909
  • [8] Low-cost and high-performance electrode materials based on BiCoO3 microspheres
    Zhao, Shuoqing
    Liu, Tianmo
    Yu, Le
    Zeng, Wen
    Zhang, Yangyang
    Ke, Bin
    Hussain, Shahid
    Lin, Liyang
    Peng, Xianghe
    CERAMICS INTERNATIONAL, 2017, 43 (03) : 2956 - 2961
  • [9] Pomelo Peel Derived Hierarchical Porous Carbon as Electrode Materials for High-Performance Supercapacitor
    Wu Zhong-Yu
    Fan Lei
    Tao You-Rong
    Wang Wei
    Wu Xing-Cai
    Zhao Jian-Wei
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2018, 34 (07) : 1249 - 1260
  • [10] Synthesis of rice husk derived porous carbon as low-cost and high-performance electrode material for supercapacitors
    Diao, Sijie
    Xie, Zhemin
    Wei, Guiyu
    Xu, Ruizheng
    Wen, Jianfeng
    Tang, Tao
    Jiang, Li
    Hu, Guanghui
    Li, Ming
    Huang, Haifu
    DIAMOND AND RELATED MATERIALS, 2024, 149