Model ensemble techniques of machine learning algorithms for soil moisture constants in the semi-arid climate conditions

被引:0
|
作者
Alaboz, Pelin [1 ]
机构
[1] Isparta Univ Appl Sci, Dept Soil Sci & Plant Nutr, Isparta, Turkiye
关键词
model average; pedotransfer functions; soil water; eau du sol; moyenne du mod & egrave; le; fonctions de p & eacute; dotransfert; POINT;
D O I
10.1002/ird.3037
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
In recent years, the use of prediction models based on intelligent algorithms has become widespread in soil science. However, each algorithm has advantages and disadvantages, and variable results can occur on different datasets. The evaluation of ensemble techniques for solving these problems is the current approach. Water problems will arise due to global warming, and soil water will become more important. This study aims to evaluate the predictive accuracy of different machine learning algorithms (support vector machine regression (SVR), random forest (RF), artificial neural network (ANN), and multivariate linear regression (MLR)) and ensemble techniques (equal weight [EQ], Bates-Granger-BG), Granger-Ramanathan (GR), Akaike information criterion (AIC), and Bayesian information criterion (BIC)) on the field capacity (FC), wilting point (WP) and available water content (AWC) of soils. As a result, higher prediction accuracy was obtained with the RF algorithm than with the value machine learning algorithm in the estimation of moisture constants. The coefficients of determination (R2) obtained for the prediction of FC, WP, and AWC via the RF algorithms were 0.624, 0.759 and 0.641, respectively. MLR had the highest error rate. Among the ensemble techniques, GR was the most successful. Lin's concordance correlation coefficient (LCCC) values obtained from the estimation of FC, WP, and AWC with the GR model were 0.801, 0.894, and 0.801, respectively. The root mean squared error (RMSE) and mean absolute error (MAE) values obtained in the estimation of the available water content with the MLR algorithm were 1.905 and 1.435, respectively, whereas these values were 1.173 and 0.767, respectively, when the GR model was used. As a result of the present study, better predictive results were obtained with ensemble techniques instead of evaluating the algorithms individually. Ces derni & egrave;res ann & eacute;es, l'utilization de mod & egrave;les de pr & eacute;diction bas & eacute;s sur des algorithmes intelligents s'est r & eacute;pandue dans la science des sols. Cependant, chaque algorithme pr & eacute;sente des avantages et des inconv & eacute;nients, et des r & eacute;sultats variables peuvent se produire sur diff & eacute;rents ensembles de donn & eacute;es. L'approche actuelle est d'& eacute;valuer des techniques d'ensemble pour r & eacute;soudre ces probl & egrave;mes. Les probl & egrave;mes d'eau vont appara & icirc;tre en raison du r & eacute;chauffement climatique, et l'eau du sol va devenir plus importante. Cette & eacute;tude vise & agrave; & eacute;valuer la pr & eacute;cision pr & eacute;dictive de diff & eacute;rents algorithmes d'apprentissage automatique (r & eacute;gression & agrave; vecteurs de support (SVR), for & ecirc;t al & eacute;atoire (RF), r & eacute;seau de neurones artificiels (ANN) et r & eacute;gression lin & eacute;aire multivari & eacute;e (MLR)) et techniques d'ensemble (poids & eacute;gal [EQ], Bates-Granger-BG), Granger-Ramanathan (GR), crit & egrave;re d'information d'Akaike (AIC) et crit & egrave;re d'information bay & eacute;sien (BIC)) sur la capacit & eacute; au champ (FC), le point de fl & eacute;trissement (WP) et la teneur en eau disponible (AWC) des sols. En cons & eacute;quence, une pr & eacute;cision de pr & eacute;diction plus & eacute;lev & eacute;e a & eacute;t & eacute; obtenue avec l'algorithme RF qu'avec l'algorithme d'apprentissage automatique des valeurs pour l'estimation des constantes d'humidit & eacute;. Les coefficients de d & eacute;termination (R2) obtenus pour la pr & eacute;diction de FC, WP et AWC au moyen des algorithmes RF & eacute;taient de 0,624, 0,759 et 0,641 respectivement. La MLR affichait le taux d'erreur le plus & eacute;lev & eacute;. Parmi les techniques d'ensemble, le GR a eu le plus de succ & egrave;s. Les valeurs du coefficient de corr & eacute;lation de concordance de Lin (LCCC) obtenues & agrave; partir de l'estimation de FC, WP et AWC avec le mod & egrave;le GR & eacute;taient de 0,801, 0,894 et 0,801, respectivement. Les valeurs de l'erreur quadratique moyenne (RMSE) et de l'erreur absolue moyenne (MAE) obtenues pour l'estimation de la teneur en eau disponible avec l'algorithme MLR & eacute;taient de 1,905 et 1,435 respectivement, alors que ces valeurs & eacute;taient de 1,173 et 0,767 respectivement, lorsque le mod & egrave;le GR a & eacute;t & eacute; utilis & eacute;. & Agrave; la suite de la pr & eacute;sente & eacute;tude, de meilleurs r & eacute;sultats pr & eacute;dictifs ont & eacute;t & eacute; obtenus avec des techniques d'ensemble au lieu d'& eacute;valuer les algorithmes s & eacute;par & eacute;ment.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Conjunction of cluster ensemble-model ensemble techniques for spatiotemporal assessment of groundwater depletion in semi-arid plains
    Sharghi, Elnaz
    Nourani, Vahid
    Zhang, Yongqiang
    Ghaneei, Parnian
    JOURNAL OF HYDROLOGY, 2022, 610
  • [22] Developing an innovative machine learning model for rainfall prediction in a Semi-Arid region
    Latif, Sarmad Dashti
    Mohammed, Dyar Othman
    Jaafar, Alhassan
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (04) : 904 - 914
  • [23] To improve model soil moisture estimation in arid/semi-arid region using in situ and remote sensing information
    Kuolin Hsu
    Jialun Li
    Soroosh Sorooshian
    Paddy and Water Environment, 2012, 10 : 165 - 173
  • [24] To improve model soil moisture estimation in arid/semi-arid region using in situ and remote sensing information
    Hsu, Kuolin
    Li, Jialun
    Sorooshian, Soroosh
    PADDY AND WATER ENVIRONMENT, 2012, 10 (03) : 165 - 173
  • [25] Design of Soil Moisture Monitoring and Drought System of Arid and Semi-arid Regions of Farmland
    Pang Dang-feng
    Lei Yun-tao
    Yan Hu-min
    Hao Li-guo
    Lu Jing
    2013 6TH INTERNATIONAL CONFERENCE ON INTELLIGENT NETWORKS AND INTELLIGENT SYSTEMS (ICINIS), 2013, : 151 - 154
  • [26] Moisture movement within concrete exposed to simulated hot arid/semi-arid conditions
    Alaswad, Gasim
    McCarter, William John
    Suryanto, Benny
    PROCEEDINGS OF THE INSTITUTION OF CIVIL ENGINEERS-CONSTRUCTION MATERIALS, 2020, 173 (06) : 298 - 312
  • [27] Simulation of soil moisture dynamics on irrigated cotton in semi-arid climates
    Antonopoulos, VZ
    AGRICULTURAL WATER MANAGEMENT, 1997, 34 (03) : 233 - 246
  • [28] The role of landscape morphology on soil moisture variability in semi-arid ecosystems
    Srivastava, Ankur
    Saco, Patricia M.
    Rodriguez, Jose F.
    Kumari, Nikul
    Chun, Kwok Pan
    Yetemen, Omer
    HYDROLOGICAL PROCESSES, 2021, 35 (01)
  • [29] Temporal persistence and stability of surface soil moisture in a semi-arid watershed
    Cosh, Michael H.
    Jackson, Thomas J.
    Moran, Susan
    Bindlish, Raiat
    REMOTE SENSING OF ENVIRONMENT, 2008, 112 (02) : 304 - 313
  • [30] Validation of a practical normalized soil moisture model with in situ measurements in humid and semi-arid regions
    Zhang, Dianjun
    Li, Zhao-Liang
    Tang, Ronglin
    Tang, Bo-Hui
    Wu, Hua
    Lu, Jing
    Shao, Kun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2015, 36 (19-20) : 5015 - 5030