Electrolyte design for the manipulation of gas bubble detachment during hydrogen evolution reaction

被引:5
|
作者
Park, Sunghak [1 ,2 ,3 ]
Lohse, Detlef [4 ]
Krug, Dominik [4 ]
Koper, Marc T. M. [1 ]
机构
[1] Leiden Univ, Leiden Inst Chem, Leiden, Netherlands
[2] Sungkyunkwan Univ, Dept Future Energy Engn, Suwon 16419, Gyeonggi Do, South Korea
[3] Sungkyunkwan Univ, Sungkyunkwan Univ Inst Energy Sci & Technol SIEST, Suwon 16419, South Korea
[4] Univ Twente, Fac Sci & Technol, Max Planck Ctr Twente Complex Fluid Dynam, Phys Fluids Grp, Enschede, Netherlands
基金
新加坡国家研究基金会; 荷兰研究理事会;
关键词
H 2 gas bubble detachment; Microbubbles coalescence; Thermal Marangoni effect; Solutal Marangoni effect; AQUEOUS-SOLUTIONS; ELECTRICAL-PROPERTIES; SURFACE-TENSION; ENERGY; WATER; COALESCENCE; OXYGEN; DYNAMICS; CATIONS; GROWTH;
D O I
10.1016/j.electacta.2024.144084
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
During electrochemical gas evolution reactions, the continuous and vigorous formation of gas bubbles hugely impacts the efficiency of the underlying electrochemical processes. In particular, enhancing the detachment of gas bubbles from the electrode surface has emerged as an effective strategy to improve reaction efficiency. In this study, we demonstrate that the detachment of H2 gas bubbles can be controlled by the electrolyte composition, which can be optimized. We employ a well-defined Pt microelectrode and utilize electrochemical oscillation analysis to elucidate the features of H2 gas bubble detachment. Our investigation explores how the behaviour of H2 gas bubbles responds to variations in electrolyte composition and concentration. The coalescence efficiency of electrochemically generated microbubbles, a critical factor determining the mode of H2 gas bubble detachment (random detachment vs. single H2 gas bubble detachment), is profoundly influenced by the electrolyte composition. Specifically, coalescence efficiency follows the Hofmeister series concerning anions and coalescence is consistently inhibited in the presence of alkali metal cations. Furthermore, we establish a comprehensive model that accounts for both thermal and solutal Marangoni effects, allowing us to rationalize the trend of detachment size and period of single H2 gas bubbles under various conditions.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Electrochemically produced hydrogen bubble probes for gas evolution kinetics and force spectroscopy
    Donose, Bogdan C.
    Harnisch, Falk
    Taran, Elena
    ELECTROCHEMISTRY COMMUNICATIONS, 2012, 24 : 21 - 24
  • [32] Crystal and electronic structure manipulation of Laves intermetallics for boosting hydrogen evolution reaction
    Zhang, Dong
    Ji, Shen-Jing
    Suen, Nian-Tzu
    CHEMICAL COMMUNICATIONS, 2021, 57 (68) : 8504 - 8507
  • [33] Design principles for hydrogen evolution reaction catalyst materials
    Strmcnik, Dusan
    Lopes, Pietro Papa
    Genorio, Bostjan
    Stamenkovic, Vojislav R.
    Markovic, Nenad M.
    NANO ENERGY, 2016, 29 : 29 - 36
  • [34] Electrolyte Effects on the Stability of Ni-Mo Cathodes for the Hydrogen Evolution Reaction
    Wijten, Jochem H. J.
    Riemersma, Romy L.
    Gauthier, Joseph
    Mandemaker, Laurens D. B.
    Verhoeven, M. W. G. M.
    Hofmann, Jan P.
    Chan, Karen
    Weckhuysen, Bert M.
    CHEMSUSCHEM, 2019, 12 (15) : 3491 - 3500
  • [35] Making the hydrogen evolution reaction in polymer electrolyte membrane electrolysers even faster
    Tymoczko, Jakub
    Calle-Vallejo, Federico
    Schuhmann, Wolfgang
    Bandarenka, Aliaksandr S.
    NATURE COMMUNICATIONS, 2016, 7
  • [36] Ru Nanoparticles on Carbon Skeletons for an Efficient Hydrogen Evolution Reaction in Alkaline Electrolyte
    Cao, Youwei
    Li, Jinming
    Li, Yejun
    Duan, Ran
    He, Jun
    Qi, Weihong
    CHEMISTRYSELECT, 2022, 7 (28):
  • [37] MBene Brønsted Acid Catalyst for Hydrogen Evolution Reaction in Alkaline Electrolyte
    Chen, Zhigang
    Wang, Hongyu
    Zhang, Chunyu
    Gou, Yinning
    Gong, Zhongmiao
    Jiang, Yaping
    Zeng, Hangyun
    Wang, Juan
    Meng, Fancheng
    Cui, Yi
    ACS CATALYSIS, 2025, 15 (04): : 2885 - 2895
  • [38] Electrolyte effects on the alkaline hydrogen evolution reaction: A mean-field approach
    de Kam, Lucas B. T.
    Maier, Thomas L.
    Krischer, Katharina
    ELECTROCHIMICA ACTA, 2024, 497
  • [39] Electrochemical behavior of gallium electrodeposition and inhibition of hydrogen evolution reaction in alkaline electrolyte
    Liu, Zuowei
    Guo, Xueyi
    Tian, Qinghua
    Xu, Zhipeng
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2023, 53 (04) : 847 - 860
  • [40] Tungsten carbide as electrocatalyst for the hydrogen evolution reaction in pH neutral electrolyte solutions
    Harnisch, Falk
    Sievers, Gustav
    Schroeder, Uwe
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2009, 89 (3-4) : 455 - 458