Investigation of superparamagnetic iron oxide nanoparticles in air environment for elevated saturation magnetization

被引:1
|
作者
Karaagac, Oznur [1 ]
Kockar, Hakan [1 ]
机构
[1] Balikesir Univ, Sci & Literature Fac, Phys Dept, TR-10145 Cagis, Balikesir, Turkiye
关键词
superparamagnetism; Co-precipitation; iron oxide nanoparticles; air atmosphere; structural and magnetic properties; MAGNETITE NANOPARTICLES; FE3O4; NANOPARTICLES; PARTICLE-SIZE; SURFACE; FUNCTIONALIZATION; MICROPARTICLES; STABILIZATION; MICROEMULSION; SALT;
D O I
10.1088/1402-4896/ad60fa
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Iron oxide nanoparticles have garnered interest for their unique properties and wide application areas. For applications, superparamagnetic nanoparticles are required so that they can be magnetized by an external magnetic field and rapidly demagnetize again when the field is removed. High saturation magnetization, Ms is also required for applications to provide easy magnetic control over separation and targeting. For magnetically controlled applications, superparamagnetic iron oxide nanoparticles with a high Ms are important. In this study, superparamagnetic iron oxide nanoparticles were co-precipitated under air atmosphere and the effects of alkali concentration, stirring rate and reaction time on the structural and related magnetic properties were investigated to obtain the high Ms for each parameter. According to the structural results, it is challenging to obtain magnetite nanoparticles under air atmosphere due to oxidizing effect. The increase of Ms values with the increase of alkali concentration may come from the phase of the samples although the crystal size of the nanoparticles is getting smaller. It can be said that there is an optimum stirring rate to obtain the highest Ms under air atmosphere rather than an uptrend/downtrend. The maximum Ms of 69.2 emu g-1 was obtained for superparamagnetic iron oxide nanoparticles synthesized at 700 rpm. With the increase of reaction time, magnetic size of the nanoparticles is observed to decrease in contrast with the increase of physical particle size. The maximum Ms value for the reaction time parameter is 67.3 emu g-1 at 15 min. Due to their high Ms values and superparamagnetic nature, the nanoparticles synthesized under study may find use in magnetic separation, water purification, and other related fields.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Controlling the surface chemistry of superparamagnetic iron oxide nanoparticles
    Cross, Shoronia
    Korpany, Katalin
    Majewski, Dorothy
    Blum, Amy Szuchmacher
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [42] A comparative study: Synthesis of superparamagnetic iron oxide nanoparticles in air and N2 atmosphere
    Alp, Erdem
    Aydogan, Nihal
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2016, 510 : 205 - 212
  • [43] Thermal Plasma Synthesis of Superparamagnetic Iron Oxide Nanoparticles
    Pingyan Lei
    Adam M. Boies
    Steven Calder
    Steven L. Girshick
    Plasma Chemistry and Plasma Processing, 2012, 32 : 519 - 531
  • [44] SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES FOR MAGNETIC PARTICLE IMAGING
    Luedtke-Buzug, Kerstin
    Biederer, Sven
    Erbe, Marlitt
    Knopp, Tobias
    Sattel, Timo F.
    Buzug, Thorsten M.
    MAGNETIC NANOPARTICLES: PARTICLE SCIENCE, IMAGING TECHNOLOGY, AND CLINICAL APPLICATIONS, 2010, : 44 - 50
  • [45] SUPERPARAMAGNETIC IRON OXIDE NANOPARTICLES (SPION) APPLICATIONS IN CANCER
    Anghelache, L.
    Alexandru, Diana Mihaela
    Dobre, R.
    Crivineanu, Maria
    REVISTA ROMANA DE MEDICINA VETERINARA, 2018, 28 (03): : 36 - 44
  • [46] Comprehensive cytotoxicity studies of superparamagnetic iron oxide nanoparticles
    Patil, Rakesh M.
    Thorat, Nanasaheb D.
    Shete, Prajkta B.
    Bedge, Poonam A.
    Gavde, Shambala
    Joshi, Meghnad G.
    Tofail, Syed A. M.
    Bohara, Raghvendra A.
    BIOCHEMISTRY AND BIOPHYSICS REPORTS, 2018, 13 : 63 - 72
  • [47] Study of Superparamagnetic Microneedles containing Iron Oxide Nanoparticles
    Lee, Seung-Jun
    APPLIED CHEMISTRY FOR ENGINEERING, 2021, 32 (05): : 556 - 561
  • [48] Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells
    Poettler, Marina
    Staicu, Andreas
    Zaloga, Jan
    Unterweger, Harald
    Weigel, Bianca
    Schreiber, Eveline
    Hofmann, Simone
    Wiest, Irmi
    Jeschke, Udo
    Alexiou, Christoph
    Janko, Christina
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (11): : 26280 - 26290
  • [49] Improved Backward Mode Pulsed Magnetomotive Ultrasound via Pre-magnetization of Superparamagnetic Iron Oxide Nanoparticles
    Wang, Hong-Wei
    Huang, Chih-Chia
    Li, Meng-Lin
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 2387 - 2389
  • [50] The Influence of Catechols on the Magnetization of Iron Oxide Nanoparticles
    Campelj, Stanislav
    Pobreznik, Matic
    Landovsky, Tomas
    Kovac, Janez
    Martin-Samos, Layla
    Hamplova, Vera
    Lisjak, Darja
    NANOMATERIALS, 2023, 13 (12)