Multi-Objective Lagged Feature Selection Based on Dependence Coefficient for Time-Series Forecasting

被引:0
|
作者
Lourdes Linares-Barrera, Maria [1 ]
Jimenez Navarro, Manuel J. [1 ]
Riquelme, Jose C. [1 ]
Martinez-Ballesteros, Maria [1 ]
机构
[1] Univ Seville, Dept Comp Languages & Syst, Seville 41012, Spain
关键词
Feature Selection; Multi-objective Optimization; Genetic Algorithm; Neural Network; Time-Series Forecasting;
D O I
10.1007/978-3-031-62799-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the fast-evolving field of machine learning, the process of feature selection is essential for reducing model complexity and enhancing interpretability. Within this context, filter methods have gained recognition for their effectiveness in assessing features through statistical metrics. A recently introduced metric, the Conditional Dependence Coefficient, aims to assess the dependence between subsets of features and a target variable, enhancing our understanding of feature relevance. This paper presents a novel feature selection approach that integrates this statistical metric with a multi-objective evolutionary algorithm. This strategy leverages the flexibility of evolutionary algorithms to efficiently explore the feature space and employs an intuitive metric for identifying pertinent features. Unlike many filter-based approaches, our method does not require thresholds or percentiles related to the number of selected features and evaluates the collective merit of feature subsets instead of the significance of individual features. To address the forecasting challenge of identifying the appropriate time lags and features, we performed experiments on eight distinct datasets containing multivariate time-series data. Comparing our method against a baseline with no feature selection, our results show solid performance in efficacy and a notable reduction in model complexity.
引用
收藏
页码:81 / 90
页数:10
相关论文
共 50 条
  • [41] LASSO multi-objective learning algorithm for feature selection
    Frederico Coelho
    Marcelo Costa
    Michel Verleysen
    Antônio P. Braga
    Soft Computing, 2020, 24 : 13209 - 13217
  • [42] Multi-objective Genetic Algorithm Evaluation in Feature Selection
    Spolaor, Newton
    Lorena, Ana Carolina
    Lee, Huei Diana
    EVOLUTIONARY MULTI-CRITERION OPTIMIZATION, 2011, 6576 : 462 - +
  • [43] Multi-objective PSO based online feature selection for multi-label classification
    Paul, Dipanjyoti
    Jain, Anushree
    Saha, Sriparna
    Mathew, Jimson
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [44] A multi-objective optimization algorithm for feature selection problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 3) : 1845 - 1863
  • [45] Multi-objective feature selection for warfarin dose prediction
    Sohrabi, Mohammad Karim
    Tajik, Alireza
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2017, 69 : 126 - 133
  • [46] A Multi-Objective Multi-Label Feature Selection Algorithm Based on Shapley Value
    Dong, Hongbin
    Sun, Jing
    Sun, Xiaohang
    ENTROPY, 2021, 23 (08)
  • [47] A multi-objective optimization algorithm for feature selection problems
    Abdollahzadeh, Benyamin
    Gharehchopogh, Farhad Soleimanian
    Engineering with Computers, 2022, 38 : 1845 - 1863
  • [48] A multi-objective optimization algorithm for feature selection problems
    Benyamin Abdollahzadeh
    Farhad Soleimanian Gharehchopogh
    Engineering with Computers, 2022, 38 : 1845 - 1863
  • [49] LASSO multi-objective learning algorithm for feature selection
    Coelho, Frederico
    Costa, Marcelo
    Verleysen, Michel
    Braga, Antonio P.
    SOFT COMPUTING, 2020, 24 (17) : 13209 - 13217
  • [50] HFMOEA: a hybrid framework for multi-objective feature selection
    Kundu, Rohit
    Mallipeddi, Rammohan
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2022, 9 (03) : 949 - 965