Lipschitz regularity of a weakly coupled vectorial almost-minimizers for the p-Laplacian

被引:0
|
作者
Bayrami, Masoud [1 ]
Fotouhi, Morteza [2 ]
Shahgholian, Henrik [3 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Sharif Univ Technol, Dept Math Sci, POB 11365-9415, Tehran, Iran
[3] KTH Royal Inst Technol, Dept Math, S-10044 Stockholm, Sweden
基金
瑞典研究理事会; 美国国家科学基金会;
关键词
Almost-minimizer; Alt-Caffarelli-type functional; Vectorial p-Laplacian; Boundary regularity; FREE-BOUNDARY;
D O I
10.1016/j.jde.2024.08.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a given constant lambda>0 and a bounded Lipschitz domain D subset of R-n(n >= 2), we establish that almost-minimizers of the functional J(v;D)=(D)integral(m)& sum;(i=1)|del vi(x)|(p)+lambda chi{|v|>0}(x) dx, 1<p<infinity, where v=(v(1),<middle dot><middle dot><middle dot>,v(m)),and m is an element of N , and , exhibit optimal Lipschitz continuity in compact sets of D. Furthermore, assuming p >= 2 and employing a distinctly different methodology, we tackle the issue of boundary Lipschitz regularity for <bold>v</bold>. This approach simultaneously yields an alternative proof for the optimal local Lipschitz regularity for the interior case. (c) 2024The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
引用
收藏
页码:447 / 473
页数:27
相关论文
共 50 条
  • [21] Lipschitz Regularity of Almost Minimizers in One-Phase Problems Driven by the p-Laplace Operator
    Dipierro, Serena
    Errari, Fausto f
    Forcillo, Nicolo
    Valdinoci, Nrico
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2024, 73 (03) : 813 - 854
  • [22] Regularity of minimizers of vectorial integrals with p-q growth
    Cupini, G
    Guidorzi, M
    Mascolo, E
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (04) : 591 - 616
  • [23] Radial symmetry of minimizers for p-Laplacian integral functionals
    Fan, Xianling
    Wang, Feizhi
    Lanzhou Daxue Xuebao/Journal of Lanzhou University, 2000, 36 (05): : 1 - 4
  • [24] Almost minimizers to a transmission problem for (p,q)-Laplacian
    Kim, Sunghan
    Shahgholian, Henrik
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 241
  • [25] LIPSCHITZ REGULARITY OF ALMOST MINIMIZERS IN A BERNOULLI PROBLEM WITH NON-STANDARD GROWTH
    da Silva, Joao vitor
    Silva, Analia
    Vivas, Hernan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (06) : 1555 - 1586
  • [26] Existence and nonexistence of global positive solutions for a weakly coupled P-Laplacian system
    Xian-zhong Zeng
    Zhen-hai Liu
    Yong-geng Gu
    Acta Mathematicae Applicatae Sinica, English Series, 2013, 29 : 541 - 554
  • [27] Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System
    Xianzhong ZENG
    Zhenhai LI
    Yonggeng GU
    Acta Mathematicae Applicatae Sinica(English Series), 2013, 29 (03) : 541 - 554
  • [28] Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System
    Zeng, Xian-zhong
    Liu, Zhen-hai
    Gu, Yong-geng
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (03): : 541 - 554
  • [29] Optimal regularity for the obstacle problem for the p-Laplacian
    Andersson, John
    Lindgren, Erik
    Shahgholian, Henrik
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (06) : 2167 - 2179
  • [30] Existence and Nonexistence of Global Positive Solutions for a Weakly Coupled P-Laplacian System
    Xian-zhong ZENG
    Zhen-hai LI
    Yong-geng GU
    Acta Mathematicae Applicatae Sinica, 2013, (03) : 541 - 554