ImputeHiFI: An Imputation Method for Multiplexed DNA FISH Data by Utilizing Single-Cell Hi-C and RNA FISH Data

被引:0
|
作者
Fan, Shichen [1 ]
Dang, Dachang [2 ]
Gao, Lin [1 ]
Zhang, Shihua [3 ,4 ,5 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
[2] Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, RCSDS, NCMIS,CEMS, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[5] Chinese Acad Sci, Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Key Lab Syst Biol, Hangzhou 310024, Peoples R China
基金
中国国家自然科学基金;
关键词
3D genomes; single-cell Hi-C data; DNA FISH data; multimodal imaging; imputation; 3-DIMENSIONAL GENOME STRUCTURES; 3D GENOME; ARCHITECTURE; DYNAMICS; ORGANIZATION; DOMAINS;
D O I
10.1002/advs.202406364
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Although multiplexed DNA fluorescence in situ hybridization (FISH) enables tracking the spatial localization of thousands of genomic loci using probes within individual cells, the high rates of undetected probes impede the depiction of 3D chromosome structures. Current data imputation methods neither utilize single-cell Hi-C data, which elucidate 3D genome architectures using sequencing nor leverage multimodal RNA FISH data that reflect cell-type information, limiting the effectiveness of these methods in complex tissues such as the mouse brain. To this end, a novel multiplexed DNA FISH imputation method named ImputeHiFI is proposed, which fully utilizes the complementary structural information from single-cell Hi-C data and the cell type signature from RNA FISH data to obtain a high-fidelity and complete spatial location of chromatin loci. ImputeHiFI enhances cell clustering, compartment identification, and cell subtype detection at the single-cell level in the mouse brain. ImputeHiFI improves the recognition of cell-type-specific loops in three high-resolution datasets. In short, ImputeHiFI is a powerful tool capable of imputing multiplexed DNA FISH data from various resolutions and imaging protocols, facilitating studies of 3D genome structures and functions. ImputeHiFI utilizes the complementary structural information from single-cell Hi-C data and the cell-type signatures from the RNA fluorescence in situ hybridization (FISH) data to obtain high-fidelity and complete spatial locations of chromatin loci. ImputeHiFI consists of three steps, i.e., matching cells, estimating the values of loci pairs, and inferring the 3D coordinates of loci. ImputeHiFI can impute multiplexed DNA FISH data from various resolutions and imaging protocols. image
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Massively multiplex single-cell Hi-C
    Ramani, Vijay
    Deng, Xinxian
    Qiu, Ruolan
    Gunderson, Kevin L.
    Steemers, Frank J.
    Disteche, Christine M.
    Noble, William S.
    Duan, Zhijun
    Shendure, Jay
    NATURE METHODS, 2017, 14 (03) : 263 - +
  • [22] Massively multiplex single-cell Hi-C
    Ramani V.
    Deng X.
    Qiu R.
    Gunderson K.L.
    Steemers F.J.
    Disteche C.M.
    Noble W.S.
    Duan Z.
    Shendure J.
    Nature Methods, 2017, 14 (3) : 263 - 266
  • [23] Single-cell technologies meet Hi-C
    Hughes, Jim R.
    Davies, James O. J.
    NATURE GENETICS, 2024, : 1542 - 1543
  • [24] SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data
    Miao Yu
    Armen Abnousi
    Yanxiao Zhang
    Guoqiang Li
    Lindsay Lee
    Ziyin Chen
    Rongxin Fang
    Taylor M. Lagler
    Yuchen Yang
    Jia Wen
    Quan Sun
    Yun Li
    Bing Ren
    Ming Hu
    Nature Methods, 2021, 18 : 1056 - 1059
  • [25] SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data
    Yu, Miao
    Abnousi, Armen
    Zhang, Yanxiao
    Li, Guoqiang
    Lee, Lindsay
    Chen, Ziyin
    Fang, Rongxin
    Lagler, Taylor M.
    Yang, Yuchen
    Wen, Jia
    Sun, Quan
    Li, Yun
    Ren, Bing
    Hu, Ming
    NATURE METHODS, 2021, 18 (09) : 1056 - +
  • [26] Deep neural network models for cell type prediction based on single-cell Hi-C data
    Zhou, Bing
    Liu, Quanzhong
    Wang, Meili
    Wu, Hao
    BMC GENOMICS, 2024, 22 (SUPPL 5):
  • [27] FisHiCal: an R package for iterative FISH-based calibration of Hi-C data
    Shavit, Yoli
    Hamey, Fiona Kathryn
    Lio, Pietro
    BIOINFORMATICS, 2014, 30 (21) : 3120 - 3122
  • [28] Imputation method for dropout in single-cell transcriptome data
    Jiang C.
    Hu L.
    Xu C.
    Ge Q.
    Zhao X.
    Shengwu Yixue Gongchengxue Zazhi/Journal of Biomedical Engineering, 2023, 40 (04): : 778 - 783
  • [29] MISC: missing imputation for single-cell RNA sequencing data
    Yang, Mary Qu
    Weissman, Sherman M.
    Yang, William
    Zhang, Jialing
    Canaann, Allon
    Guan, Renchu
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [30] Integrating Hi-C and FISH data for modeling of the 3D organization of chromosomes
    Abbas, Ahmed
    He, Xuan
    Niu, Jing
    Zhou, Bin
    Zhu, Guangxiang
    Ma, Tszshan
    Song, Jiangpeikun
    Gao, Juntao
    Zhang, Michael Q.
    Zeng, Jianyang
    NATURE COMMUNICATIONS, 2019, 10 (1)