Shapley Curves: A Smoothing Perspective

被引:1
|
作者
Miftachov, Ratmir [1 ,2 ]
Keilbar, Georg [1 ]
Haerdle, Wolfgang Karl [1 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Humboldt Univ, Sch Business & Econ, Berlin, Germany
[2] Humboldt Univ, Inst Math, Berlin, Germany
[3] Singapore Management Univ, Sim Kee Boon Inst, Singapore, Singapore
[4] Natl Univ Singapore, Asia Competitiveness Inst, Singapore, Singapore
[5] Natl Yang Ming Chiao Tung Univ, Hsinchu, Taiwan
[6] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[7] Acad Econ Sci, Inst Digital Assets, Bucharest, Romania
关键词
Bootstrap; Explainable ML; Nonparametric statistics; Variable importance; WILD BOOTSTRAP; REGRESSION;
D O I
10.1080/07350015.2024.2365781
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article fills the limited statistical understanding of Shapley values as a variable importance measure from a nonparametric (or smoothing) perspective. We introduce population-level Shapley curves to measure the true variable importance, determined by the conditional expectation function and the distribution of covariates. Having defined the estimand, we derive minimax convergence rates and asymptotic normality under general conditions for the two leading estimation strategies. For finite sample inference, we propose a novel version of the wild bootstrap procedure tailored for capturing lower-order terms in the estimation of Shapley curves. Numerical studies confirm our theoretical findings, and an empirical application analyzes the determining factors of vehicle prices.
引用
收藏
页码:312 / 323
页数:12
相关论文
共 50 条
  • [31] SMOOTHING CURVES IN P3 WITH PA = 1
    SANCHEZ, CA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) : 613 - 616
  • [32] Estimating curves and derivatives with parametric penalized spline smoothing
    Cao, Jiguo
    Cai, Jing
    Wang, Liangliang
    STATISTICS AND COMPUTING, 2012, 22 (05) : 1059 - 1067
  • [33] On Projective Invariant Smoothing and Evolutions of Planar Curves and Polygons
    Alfred M. Bruckstein
    Doron Shaked
    Journal of Mathematical Imaging and Vision, 1997, 7 : 225 - 240
  • [34] L- and V-curves for optimal smoothing
    Frasso, Gianluca
    Eilers, Paul H. C.
    STATISTICAL MODELLING, 2015, 15 (01) : 91 - 111
  • [35] On projective invariant smoothing and evolutions of planar curves and polygons
    Bruckstein, AM
    Shaked, D
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 1997, 7 (03) : 225 - 240
  • [36] A data smoothing technique for piecewise convex concave curves
    Li, W
    Naik, D
    Swetits, J
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1996, 17 (02): : 517 - 537
  • [37] Distance-Based Smoothing of Curves on Surface Meshes
    Pawellek, M.
    Roessl, C.
    Lawonn, K.
    COMPUTER GRAPHICS FORUM, 2024, 43 (05)
  • [38] Genetic and environmental smoothing of lactation curves with cubic splines
    White, IMS
    Thompson, R
    Brotherstone, S
    JOURNAL OF DAIRY SCIENCE, 1999, 82 (03) : 632 - 638
  • [39] Perspective elliptic curves
    Cooper, EM
    AMERICAN JOURNAL OF MATHEMATICS, 1931, 53 : 555 - 572
  • [40] A Shapley Value Perspective on Profit Allocation for RFID Technology Alliance
    Xu, Wei
    Yang, Zhixin
    Wang, Hengyu
    2014 11TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT (ICSSSM), 2014,