Shapley Curves: A Smoothing Perspective

被引:1
|
作者
Miftachov, Ratmir [1 ,2 ]
Keilbar, Georg [1 ]
Haerdle, Wolfgang Karl [1 ,3 ,4 ,5 ,6 ,7 ]
机构
[1] Humboldt Univ, Sch Business & Econ, Berlin, Germany
[2] Humboldt Univ, Inst Math, Berlin, Germany
[3] Singapore Management Univ, Sim Kee Boon Inst, Singapore, Singapore
[4] Natl Univ Singapore, Asia Competitiveness Inst, Singapore, Singapore
[5] Natl Yang Ming Chiao Tung Univ, Hsinchu, Taiwan
[6] Charles Univ Prague, Fac Math & Phys, Prague, Czech Republic
[7] Acad Econ Sci, Inst Digital Assets, Bucharest, Romania
关键词
Bootstrap; Explainable ML; Nonparametric statistics; Variable importance; WILD BOOTSTRAP; REGRESSION;
D O I
10.1080/07350015.2024.2365781
中图分类号
F [经济];
学科分类号
02 ;
摘要
This article fills the limited statistical understanding of Shapley values as a variable importance measure from a nonparametric (or smoothing) perspective. We introduce population-level Shapley curves to measure the true variable importance, determined by the conditional expectation function and the distribution of covariates. Having defined the estimand, we derive minimax convergence rates and asymptotic normality under general conditions for the two leading estimation strategies. For finite sample inference, we propose a novel version of the wild bootstrap procedure tailored for capturing lower-order terms in the estimation of Shapley curves. Numerical studies confirm our theoretical findings, and an empirical application analyzes the determining factors of vehicle prices.
引用
收藏
页码:312 / 323
页数:12
相关论文
共 50 条
  • [1] Smoothing of ribbons over curves
    González, M
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2006, 591 : 201 - 235
  • [2] Smoothing the curves on a winding road
    Toensmeier, PA
    MODERN PLASTICS, 1999, 76 (08): : 55 - 55
  • [3] SMOOTHING CURVES BY REFLEXIVE SHEAVES
    BOLONDI, G
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 102 (04) : 797 - 803
  • [4] Wavelets Smoothing for Multidimensional Curves
    Pigoli, Davide
    Sangalli, Laura M.
    RECENT ADVANCES IN FUNCTIONAL DATA ANALYSIS AND RELATED TOPICS, 2011, : 255 - 261
  • [5] Nonparametric Smoothing of Yield Curves
    Tanggaard C.
    Review of Quantitative Finance and Accounting, 1997, 9 (3) : 251 - 267
  • [6] SMOOTHING ALGEBRAIC SPACE-CURVES
    HARTSHORNE, R
    HIRSCHOWITZ, A
    LECTURE NOTES IN MATHEMATICS, 1985, 1124 : 98 - 131
  • [7] SMOOTHING PERIODIC CURVES BY A METHOD OF REGULARIZATION
    THOMASAGNAN, C
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1990, 11 (03): : 482 - 502
  • [8] Smoothing space curves with the MLS projection
    Tekumalla, LS
    Cohen, E
    PROCEEDINGS OF THE 8TH JOINT CONFERENCE ON INFORMATION SCIENCES, VOLS 1-3, 2005, : 1606 - 1609
  • [9] On the Convergence of Planar Curves Under Smoothing
    Zhong, Baojiang
    Ma, Kai-Kuang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (08) : 2171 - 2189
  • [10] SMOOTHING ROTATION CURVES AND MASS PROFILES
    Berrier, Joel C.
    Sellwood, J. A.
    ASTROPHYSICAL JOURNAL, 2015, 799 (02):