Algorithm evaluation for parallel detection and tracking of UAVs

被引:0
|
作者
Ojdanic, Denis [1 ]
Naverschnigg, Christopher [1 ]
Sinn, Andreas [1 ]
Schitter, Georg [1 ]
机构
[1] TU Wien, Automat & Control Inst ACIN, Gusshausstr 27-29, Vienna, Austria
关键词
Deep learning; detection; tracking; real-time; UAV;
D O I
10.1117/12.3017037
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the evaluation of object detectors and trackers within a parallel software architecture to enable long distance UAV detection and tracking in real-time using a telescope-based optical system. The architecture combines computationally expensive deep learning-based object detectors with traditional object trackers to achieve a detection and tracking rate of 100 fps. Four object detectors, FRCNN, SSD, Retinanet and FCOS, are fine-tuned on a custom UAV dataset and integrated together with three trackers, Medianflow, KCF and MOSSE, into a parallel software architecture. The evaluation is conducted on a separate set of test images and videos. The combination of FRCNN and Medianflow shows the best performance in terms of intersection over union and center location offset on the video test set, enabling detection and tracking of UAVs at 100 fps.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Multitarget tracking parallel algorithm for multiple stations
    Xu, Bingji
    Meng, Zhaowei
    Duan, Fuxing
    [J]. Huazhong Ligong Daxue Xuebao/Journal Huazhong (Central China) University of Science and Technology, 1996, 24 (10):
  • [32] A scalable parallel algorithm for reactive particle tracking
    Morvillo, Maria
    Rizzo, Calogero B.
    de Barros, Felipe P. J.
    Astani, Sonny
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 446
  • [33] PARALLEL PARTICLE FILTER ALGORITHM IN FACE TRACKING
    Liu, Ke-Yan
    Tang, Liang
    Li, Shan-Qing
    Wang, Lei
    Liu, Wei
    [J]. ICME: 2009 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-3, 2009, : 1813 - 1816
  • [34] An X-Band FMCW Radar for Detection and Tracking of Miniaturized UAVs
    Lee, Jayol
    Park, Min
    Eo, Iksoo
    Koo, Bontae
    [J]. PROCEEDINGS 2017 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI), 2017, : 1844 - 1845
  • [35] Target tracking algorithms for multi-UAVs formation cooperative detection
    Jianhong, Wang
    Ramirez-Mendoza, Ricardo A.
    Xiaojun, Tang
    [J]. SYSTEMS SCIENCE & CONTROL ENGINEERING, 2021, 9 (01) : 417 - 429
  • [36] Micro-Doppler Based Detection and Tracking of UAVs with Multistatic Radar
    Hoffmann, Folker
    Ritchie, Matthew
    Fioranelli, Francesco
    Charlish, Alexander
    Griffiths, Hugh
    [J]. 2016 IEEE RADAR CONFERENCE (RADARCONF), 2016, : 893 - 898
  • [37] Object detection, recognition, and tracking from UAVs using a thermal camera
    Leira, Frederik S.
    Helgesen, Hakon Hagen
    Johansen, Tor Arne
    Fossen, Thor I.
    [J]. JOURNAL OF FIELD ROBOTICS, 2021, 38 (02) : 242 - 267
  • [38] Parallel tracking and detection for long-term object tracking
    Xiong, Dan
    Lu, Huimin
    Yu, Qinghua
    Xiao, Junhao
    Han, Wei
    Zheng, Zhiqiang
    [J]. INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2020, 17 (02):
  • [39] Robust Visual Detection and Tracking Strategies for Autonomous Aerial Refueling of UAVs
    Sun, Siyang
    Yin, Yingjie
    Wang, Xingang
    Xu, De
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2019, 68 (12) : 4640 - 4652
  • [40] Airborne Visual Detection and Tracking of Cooperative UAVs Exploiting Deep Learning
    Opromolla, Roberto
    Inchingolo, Giuseppe
    Fasano, Giancarmine
    [J]. SENSORS, 2019, 19 (19)