Acceptability of digital health technologies in early Parkinson's disease: lessons from WATCH-PD

被引:0
|
作者
Kangarloo, T. [1 ]
Latzman, R. D. [1 ]
Adams, J. L. [2 ,3 ]
Dorsey, R. [2 ,3 ]
Kostrzebski, M. [2 ,3 ]
Severson, J. [4 ]
Anderson, D. [4 ]
Horak, F. [5 ]
Stephenson, D. [6 ]
Cosman, J. [7 ]
机构
[1] Takeda Pharmaceut, Cambridge, MA 02139 USA
[2] Univ Rochester, Ctr HlthTechnol, Rochester, NY USA
[3] Univ Rochester, Dept Neurol, Rochester, NY USA
[4] Clin Ink, Horsham, PA USA
[5] Oregon Hlth & Sci Univ, Dept Neurol, Balance Disorders Lab, Portland, OR USA
[6] Crit Path Inst, Tucson, AZ USA
[7] Abbvie, N Chicago, IL USA
来源
关键词
digital tool; patient feedback; Parkinson; wearability; wearable sensors; OLDER-ADULTS; PROGRESSION; PEOPLE;
D O I
10.3389/fdgth.2024.1435693
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Introduction Digital health technologies (DHTs) have the potential to alleviate challenges experienced in clinical trials through more objective, naturalistic, and frequent assessments of functioning. However, implementation of DHTs come with their own challenges, including acceptability and ease of use for study participants. In addition to acceptability, it is also important to understand device proficiency in the general population and within patient populations who may be asked to use DHTs for extended periods of time. We thus aimed to provide an overview of participant feedback on acceptability of DHTs, including body-worn sensors used in the clinic and a mobile application used at-home, used throughout the duration of the Wearable Assessments in the Clinic and at Home in Parkinson's Disease (WATCH-PD) study, an observational, longitudinal study looking at disease progression in early Parkinson's Disease (PD).Methods 82 participants with PD and 50 control participants were enrolled at 17 sites throughout the United States and followed for 12 months. We assessed participants' general device proficiency at baseline, using the Mobile Device Proficiency Questionnaire (MDPQ). The mean MDPQ score at Baseline did not significantly differ between PD patients and healthy controls (20.6 [2.91] vs 21.5 [2.94], p = .10).Results Questionnaire results demonstrated that participants had generally positive views on the comfort and use of the digital technologies throughout the duration of the study, regardless of group.Discussion This is the first study to evaluate patient feedback and impressions of using technology in a longitudinal observational study in early Parkinson's Disease. Results demonstrate device proficiency and acceptability of various DHTs in people with Parkinson's does not differ from that of neurologically healthy older adults, and, overall, participants had a favorable view of the DHTs deployed in the WATCH-PD study.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Crowdsourcing digital health measures to predict Parkinson’s disease severity: the Parkinson’s Disease Digital Biomarker DREAM Challenge
    Solveig K. Sieberts
    Jennifer Schaff
    Marlena Duda
    Bálint Ármin Pataki
    Ming Sun
    Phil Snyder
    Jean-Francois Daneault
    Federico Parisi
    Gianluca Costante
    Udi Rubin
    Peter Banda
    Yooree Chae
    Elias Chaibub Neto
    E. Ray Dorsey
    Zafer Aydın
    Aipeng Chen
    Laura L. Elo
    Carlos Espino
    Enrico Glaab
    Ethan Goan
    Fatemeh Noushin Golabchi
    Yasin Görmez
    Maria K. Jaakkola
    Jitendra Jonnagaddala
    Riku Klén
    Dongmei Li
    Christian McDaniel
    Dimitri Perrin
    Thanneer M. Perumal
    Nastaran Mohammadian Rad
    Erin Rainaldi
    Stefano Sapienza
    Patrick Schwab
    Nikolai Shokhirev
    Mikko S. Venäläinen
    Gloria Vergara-Diaz
    Yuqian Zhang
    Yuanjia Wang
    Yuanfang Guan
    Daniela Brunner
    Paolo Bonato
    Lara M. Mangravite
    Larsson Omberg
    npj Digital Medicine, 4
  • [32] Crowdsourcing digital health measures to predict Parkinson's disease severity: the Parkinson's Disease Digital Biomarker DREAM Challenge
    Sieberts, Solveig K.
    Schaff, Jennifer
    Duda, Marlena
    Pataki, Balint Armin
    Sun, Ming
    Snyder, Phil
    Daneault, Jean-Francois
    Parisi, Federico
    Costante, Gianluca
    Rubin, Udi
    Banda, Peter
    Chae, Yooree
    Chaibub Neto, Elias
    Dorsey, E. Ray
    Aydin, Zafer
    Chen, Aipeng
    Elo, Laura L.
    Espino, Carlos
    Glaab, Enrico
    Goan, Ethan
    Golabchi, Fatemeh Noushin
    Gormez, Yasin
    Jaakkola, Maria K.
    Jonnagaddala, Jitendra
    Klen, Riku
    Li, Dongmei
    McDaniel, Christian
    Perrin, Dimitri
    Perumal, Thanneer M.
    Rad, Nastaran Mohammadian
    Rainaldi, Erin
    Sapienza, Stefano
    Schwab, Patrick
    Shokhirev, Nikolai
    Venalainen, Mikko S.
    Vergara-Diaz, Gloria
    Zhang, Yuqian
    Wang, Yuanjia
    Guan, Yuanfang
    Brunner, Daniela
    Bonato, Paolo
    Mangravite, Lara M.
    Omberg, Larsson
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [33] Proposed Framework to Evaluate the Ability of Digital Measures to Track Early Stage Parkinson's disease (PD) Progression
    Shin, S.
    Ho, K.
    Chen, C.
    Li, S.
    Kowahl, N.
    Rainaldi, E.
    Evers, L.
    Meinders, M.
    Shih, L.
    Siderowf, A.
    Bloem, B.
    Kapur, R.
    MOVEMENT DISORDERS, 2024, 39 : S857 - S858
  • [34] MDS Parkinson's disease (PD) e-Diary - a New Patient-Centered Digital Tool for People with Parkinson's disease (PD)
    Rabano-Suarez, P.
    Monje, M. H. G.
    Vizcarra, J. A.
    Paul, S. S.
    Avion, S.
    Morse, M.
    Skorvanek, M.
    Tosin, M. H. S.
    Fuller, R.
    Turner, T. H.
    Dekker, M.
    Hall, D. A.
    Bergmann, K.
    Cedarbaum, J.
    Maetzler, W.
    Espay, A. J.
    Martinez-Martin, P.
    Stebbins, G. T.
    Mestre, T.
    Sanchez-Ferro, A.
    MOVEMENT DISORDERS, 2024, 39 : S565 - S565
  • [35] Developing a selection framework for digital measures of Parkinson's disease (PD) progression for the EJS']JS ACT-Parkinson's disease (PD) trial
    Ellis-Doyle, R.
    Zeissler, M. L.
    Gonzalez-Robles, C.
    Bartlett, M.
    Collins, S.
    Del-Din, S.
    Haar, S.
    Hu, M.
    Jha, A.
    Lambert, C.
    Noyce, A.
    Petty, R.
    Pushparatnam, K.
    Rochester, L.
    Siu, C.
    Mills, G.
    Schrag, A.
    Foltynie, T.
    Carroll, C.
    Yarnall, A.
    MOVEMENT DISORDERS, 2024, 39 : S335 - S335
  • [36] Digital health technologies and self-efficacy in Parkinson's: a scoping review
    Hall, Andrew Michael
    Allgar, Victoria
    Carroll, Camille B.
    Meinert, Edward
    BMJ OPEN, 2025, 15 (01):
  • [37] Clinical features in early Parkinson's disease (PD) predict survival
    Lo, R. Y.
    Van Den Eeden, S. K.
    Tanner, C. M.
    Albers, K. B.
    McGuire, V. M.
    Nelson, L. M.
    MOVEMENT DISORDERS, 2008, 23 (01) : S243 - S243
  • [38] Early Prediction of Parkinson's Disease (PD) Using Ensemble Classifiers
    Anisha, C. D.
    Arulanand, N.
    2020 INTERNATIONAL CONFERENCE ON INNOVATIVE TRENDS IN INFORMATION TECHNOLOGY (ICITIIT), 2020,
  • [39] Rasagiline provides symptomatic benefit in early Parkinson's disease (PD)
    Jankovic, J.
    PARKINSONISM & RELATED DISORDERS, 2009, 15 : S127 - S128
  • [40] Clinical Profile of Early-Onset Parkinson's disease (PD)
    Pena Martinez, S.
    Ayala Minero, R.
    Amaya, R.
    Medina Escobar, A.
    Salles, P.
    MOVEMENT DISORDERS, 2024, 39 : S234 - S234