Simultaneous determination of dopamine and folic acid using chitosan-carrageenan hydrogel/graphene oxide modified glassy carbon electrode

被引:0
|
作者
Postolovic, Katarina S. [1 ]
Stanic, Zorka D. [1 ]
机构
[1] Univ Kragujevac, Fac Sci, Dept Chem, Kragujevac, Serbia
关键词
Dopamine; Folic acid; Chitosan hydrogel; Carrageenan hydrogel; Graphene oxide; Voltammetric sensor; POLYELECTROLYTE COMPLEXES; PASTE ELECTRODE; ASCORBIC-ACID; URIC-ACID; SPECTROFLUOROMETRIC DETERMINATION; ELECTROCHEMICAL DETERMINATION; VOLTAMMETRIC DETERMINATION; SIMULTANEOUS RESOLUTION; SELECTIVE DETERMINATION; KAPPA-CARRAGEENAN;
D O I
10.1016/j.microc.2024.111660
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Dopamine and folic acid are compounds that coexist in biological fluids, essential for metabolic processes and central nervous system function. The fast, sensitive, and accurate detection of these compounds in biological and pharmaceutical samples holds significant importance for human health assessment and the pharmaceutical industry. An innovative and efficacious electrochemical sensor for the simultaneous quantification of dopamine and folic acid was developed. This sensor was based on the glassy carbon electrode modified with chitosan kappa- carrageenan hydrogel, enriched with the addition of a catalytically active component - graphene oxide. This modification procedure significantly improved the adsorption of the analytes onto the electrode surface thanks to the established favorable intermolecular interactions, thereby enhancing the electrical conductivity of the electrode. The sensor demonstrated an extensive linear response range of the cathodic current in relation to the concentration of dopamine and folic acid, both when quantified individually and simultaneously. Key advantages of this sensor include the obtained low detection limits for both analytes (5.65 x 10(-9) mol/L for dopamine, and 1.88 x 10(-7)mol/L- 7 mol/L for folic acid), electrode selectivity, stability, and good reproducibility of results. The results achieved in this study signify the considerable potential of the developed sensor for the determination of dopamine and folic acid in diverse sample types. Additionally, this work presents an effective method for sensitive detection of selected analytes, and also highlights the utilization of nontoxic compounds in the preparation of a biocompatible sensor, given its considerable potential for future practical applications in various fields.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [41] Simultaneous Determination of Dopamine and Uric Acid using Glassy Carbon Electrode Modified with Almond-Shell-Based Nanoporous Carbon
    Baikeli, Yiliyasi
    Mamat, Xamxikamar
    Yalikun, Nuerbiya
    Wang, Ying
    Qiao, Mengfei
    Hu, Guangzhi
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (13) : B1171 - B1178
  • [42] Electrochemical determination of caffeine in beverage using graphene oxide modified glassy carbon electrode
    Murugan, E.
    Poongan, A.
    INDIAN JOURNAL OF CHEMICAL TECHNOLOGY, 2021, 28 (05) : 528 - 536
  • [43] Electrochemical determination of adenine using a glassy carbon electrode modified with graphene oxide and polyaniline
    Sharma, Vimal
    Hynek, David
    Trnkova, Libuse
    Hemzal, Dusan
    Marik, Marian
    Kizek, Rene
    Hubalek, Jaromir
    MICROCHIMICA ACTA, 2016, 183 (04) : 1299 - 1306
  • [44] Electrochemical determination of adenine using a glassy carbon electrode modified with graphene oxide and polyaniline
    Vimal Sharma
    David Hynek
    Libuse Trnkova
    Dusan Hemzal
    Marian Marik
    Rene Kizek
    Jaromir Hubalek
    Microchimica Acta, 2016, 183 : 1299 - 1306
  • [45] Amperometric Determination of Acetaminophen (paracetamol) Using Graphene Oxide Modified Glassy Carbon Electrode
    Alagarsamy, Periyalagan
    Settu, Ramki
    Chen, Shen-Ming
    Chen, Tse-Wei
    Hong, In-Seok
    Rao, Mettu Mallikarjuna
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (08): : 7930 - 7938
  • [46] Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid by Differential Pulse Voltammetry using Tiron Modified Glassy Carbon Electrode
    Ensafi, Ali A.
    Taei, M.
    Khayamian, Taghi
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2010, 5 (01): : 116 - 130
  • [47] Ultrasensitive Reduced Graphene Oxide-Poly(Procion)/Gold Nanoparticles Modified Glassy Carbon Electrode for Selective and Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid
    Edris, Nusiba Mohammed Modawe Alshik
    Abdullah, Jaafar
    Kamaruzaman, Sazlinda
    Sulaiman, Yusran
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 166 (08) : B664 - B672
  • [48] Fabrication of Cetyltrimethylammonium Bromide/chitosan Modified Glassy Carbon Electrode for Simultaneous Determination of Uric Acid and Ascorbic Acid
    Zhang, Ying
    Luo, Li-Qiang
    Ding, Ya-Ping
    Li, Qiu-Xia
    Shen, Xia
    JOURNAL OF THE CHINESE CHEMICAL SOCIETY, 2010, 57 (5A) : 1061 - 1066
  • [49] Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode
    Yang, La
    Liu, Dong
    Huang, Jianshe
    You, Tianyan
    SENSORS AND ACTUATORS B-CHEMICAL, 2014, 193 : 166 - 172
  • [50] Simultaneous determination of ascorbic acid, dopamine and uric acid using poly(4-aminobutyric acid) modified glassy carbon electrode
    Zheng, Xinyu
    Zhou, Xuechou
    Ji, Xiaoyan
    Lin, Ruiyu
    Lin, Wenxiong
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 178 : 359 - 365