Perceptual error optimization for Monte Carlo animation rendering

被引:2
|
作者
Korac, Misa [1 ]
Salauen, Corentin [2 ]
Georgiev, Iliyan [3 ]
Grittmann, Pascal [4 ]
Slusallek, Philipp [1 ]
Myszkowski, Karol [2 ]
Singh, Gurprit [2 ]
机构
[1] Saarland Univ, DFKI, Saarbrucken, Germany
[2] Max Planck Inst Informat, Saarbrucken, Germany
[3] Adobe, London, England
[4] Saarland Univ, Saarbrucken, Germany
关键词
Monte Carlo rendering; stochastic sampling; blue noise; SENSITIVITY; MOTION;
D O I
10.1145/3610548.3618146
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Independently estimating pixel values in Monte Carlo rendering results in a perceptually sub-optimal white-noise distribution of error in image space. Recent works have shown that perceptual fidelity can be improved significantly by distributing pixel error as blue noise instead. Most such works have focused on static images, ignoring the temporal perceptual effects of animation display. We extend prior formulations to simultaneously consider the spatial and temporal domains, and perform an analysis to motivate a perceptually better spatio-temporal error distribution. We then propose a practical error optimization algorithm for spatio-temporal rendering and demonstrate its effectiveness in various configurations.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Sampling-Distribution-Based Evaluation for Monte Carlo Rendering
    Freude, Christian
    Sakai, Hiroyuki
    Zsolnai-Feher, Karoly
    Wimmer, Michael
    PROCEEDINGS OF THE 18TH INTERNATIONAL JOINT CONFERENCE ON COMPUTER VISION, IMAGING AND COMPUTER GRAPHICS THEORY AND APPLICATIONS, VISIGRAPP 2023, 2023, : 119 - 130
  • [42] Adaptive Sampling for Monte-Carlo Event Imagery Rendering
    Manabe, Yuichiro
    Yatagawa, Tatsuya
    Morishima, Shigeo
    Kubo, Hiroyuki
    PROCEEDINGS OF THE SIGGRAPH 2024 POSTERS, 2024,
  • [43] Langevin Monte Carlo Rendering with Gradient-based Adaptation
    Luan, Fujun
    Zhao, Shuang
    Bala, Kavita
    Gkioulekas, Ioannis
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [44] On Filtering the Noise from the Random Parameters in Monte Carlo Rendering
    Sen, Pradeep
    Darabi, Soheil
    ACM TRANSACTIONS ON GRAPHICS, 2012, 31 (03):
  • [45] A MONTE-CARLO APPROACH TO ERROR PROPAGATION
    OGILVIE, JF
    COMPUTERS & CHEMISTRY, 1984, 8 (03): : 205 - 207
  • [46] Weak Error for Nested Multilevel Monte Carlo
    Daphné Giorgi
    Vincent Lemaire
    Gilles Pagès
    Methodology and Computing in Applied Probability, 2020, 22 : 1325 - 1348
  • [47] Monte Carlo evaluation of periodic error uncertainty
    Schmitz, Tony L.
    Kim, Hyo Soo
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2007, 31 (03): : 251 - 259
  • [48] Weak Error for Nested Multilevel Monte Carlo
    Giorgi, Daphne
    Lemaire, Vincent
    Pages, Gilles
    METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2020, 22 (03) : 1325 - 1348
  • [49] STATISTICAL ERROR OF DIFFUSION MONTE-CARLO
    ROTHSTEIN, SM
    VRBIK, J
    JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 74 (01) : 127 - 142
  • [50] The Monte Carlo computation error of transition probabilities
    Nielsen, Adam
    STATISTICS & PROBABILITY LETTERS, 2016, 118 : 163 - 170