Probabilistic Program Verification via Inductive Synthesis of Inductive Invariants

被引:8
|
作者
Batz, Kevin [1 ]
Chen, Mingshuai [2 ]
Junges, Sebastian [3 ]
Kaminski, Benjamin Lucien [4 ,5 ]
Katoen, Joost-Pieter [1 ]
Matheja, Christoph [6 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] Zhejiang Univ, Hangzhou, Peoples R China
[3] Radboud Univ Nijmegen, Nijmegen, Netherlands
[4] Saarland Univ, Saarbrucken, Germany
[5] UCL, London, England
[6] Tech Univ Denmark, Lyngby, Denmark
关键词
SYMBOLIC MODEL CHECKING; GENERATION;
D O I
10.1007/978-3-031-30820-8_25
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Essential tasks for the verification of probabilistic programs include bounding expected outcomes and proving termination in finite expected runtime. We contribute a simple yet effective inductive synthesis approach for proving such quantitative reachability properties by generating inductive invariants on source-code level. Our implementation shows promise: It finds invariants for (in)finite-state programs, can beat state-of-the-art probabilistic model checkers, and is competitive with modern tools dedicated to invariant synthesis and expected runtime reasoning.
引用
收藏
页码:410 / 429
页数:20
相关论文
共 50 条
  • [41] Probabilistic inductive logic programming
    De Raedt, Luc
    Kersting, Kristian
    Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2008, 4911 LNAI : 1 - 27
  • [42] A logic for inductive probabilistic reasoning
    Jaeger, M
    SYNTHESE, 2005, 144 (02) : 181 - 248
  • [43] Probabilistic inductive constraint logic
    Fabrizio Riguzzi
    Elena Bellodi
    Riccardo Zese
    Marco Alberti
    Evelina Lamma
    Machine Learning, 2021, 110 : 723 - 754
  • [44] WHEN PROBABILISTIC SUPPORT IS INDUCTIVE
    MURA, A
    PHILOSOPHY OF SCIENCE, 1990, 57 (02) : 278 - 289
  • [45] Probabilistic inductive classes of graphs
    Kejzar, Natasar
    Nikoloski, Zoran
    Batagelj, Vladimir
    JOURNAL OF MATHEMATICAL SOCIOLOGY, 2008, 32 (02): : 85 - 109
  • [46] Probabilistic inductive logic programming
    De Raedt, L
    Kersting, K
    ALGORITHMIC LEARNING THEORY, PROCEEDINGS, 2004, 3244 : 19 - 36
  • [47] A theory of formal synthesis via inductive learning
    Susmit Jha
    Sanjit A. Seshia
    Acta Informatica, 2017, 54 : 693 - 726
  • [48] A theory of formal synthesis via inductive learning
    Jha, Susmit
    Seshia, Sanjit A.
    ACTA INFORMATICA, 2017, 54 (07) : 693 - 726
  • [49] Almost Correct Invariants: Synthesizing Inductive Invariants by Fuzzing Proofs
    Lahiri, Surnit
    Roy, Subhajit
    PROCEEDINGS OF THE 31ST ACM SIGSOFT INTERNATIONAL SYMPOSIUM ON SOFTWARE TESTING AND ANALYSIS, ISSTA 2022, 2022, : 352 - 364
  • [50] Path-based Inductive Synthesis for Program Inversion
    Srivastava, Saurabh
    Gulwani, Sumit
    Chaudhuri, Swarat
    Foster, Jeffrey S.
    ACM SIGPLAN NOTICES, 2011, 46 (06) : 492 - 503