Joint Extraction of Nested Entities and Relations Based on Multi-task Learning

被引:0
|
作者
Wan, Jing [1 ]
Qin, Chunyu [1 ]
Yang, Jing [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing 100029, Peoples R China
关键词
Nested named entity recognition; Relation extraction; Multi-task learning; Parameter sharing; Annotation strategy;
D O I
10.1007/978-3-031-40286-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nested named entity recognition and relation extraction are two crucial tasks in information extraction. Traditional systems often treat them as separate, sequential tasks, which can lead to error propagation. To mitigate this issue, we present a joint extraction model for nested named entities and relations based on a two-level structure, which facilitates joint learning of these subtasks through parameter sharing. Initially, we employ a hierarchical network to identify nested entities. Then, to extract relationships between the nested entities identified at different layers, we introduce multiple rounds of hierarchical relation extraction, creating a dual-dynamic hierarchical network structure. Moreover, as there is a current lack of suitable tagging schemes, we propose a novel tagging scheme grounded in a hierarchical structure. Utilizing this approach, we relabel three datasets: Genia, KBP, and NYT. Experimental results indicate that our proposed joint extraction model significantly outperforms traditional methods in both tasks.
引用
收藏
页码:368 / 382
页数:15
相关论文
共 50 条
  • [21] Dispatched attention with multi-task learning for nested mention recognition
    Fei, Hao
    Ren, Yafeng
    Ji, Donghong
    INFORMATION SCIENCES, 2020, 513 : 241 - 251
  • [22] Dispatched attention with multi-task learning for nested mention recognition
    Fei, Hao
    Ren, Yafeng
    Ji, Donghong
    Information Sciences, 2020, 513 : 241 - 251
  • [23] Joint Extraction of Entities and Relations Using Reinforcement Learning and Deep Learning
    Feng, Yuntian
    Zhang, Hongjun
    Hao, Wenning
    Chen, Gang
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2017, 2017
  • [24] Multiple object tracking method based on multi-task joint learning
    Qu Y.
    Li W.-H.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2023, 53 (10): : 2932 - 2941
  • [25] Multi-Task Learning Based Joint Pulse Detection and Modulation Classification
    Akyon, Fatih Cagatay
    Nuhoglu, Mustafa Atahan
    Alp, Yasar Kemal
    Arikan, Orhan
    2019 27TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2019,
  • [26] Multi-Task Identification of Entities, Relations, and Coreference for Scientific Knowledge Graph Construction
    Luan, Yi
    He, Luheng
    Ostendorf, Mari
    Hajishirzi, Hannaneh
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3219 - 3232
  • [27] A multi-task learning based approach to biomedical entity relation extraction
    Li, Qingqing
    Yang, Zhihao
    Luo, Ling
    Wang, Lei
    Zhang, Yin
    Lin, Hongfei
    Wang, Jian
    Yang, Liang
    Xu, Kan
    Zhang, Yijia
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 680 - 682
  • [28] Joint aspect terms extraction and aspect categories detection via multi-task learning
    Wei, Youcai
    Zhang, Hongyun
    Fang, Jian
    Wen, Jiahui
    Ma, Jingwei
    Zhang, Guangda
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 174
  • [29] Joint Feature Extraction from Functional Connectivity Graphs with Multi-task Feature Learning
    Altmann, Andre
    Ng, Bernard
    2015 INTERNATIONAL WORKSHOP ON PATTERN RECOGNITION IN NEUROIMAGING (PRNI) 2015, 2015, : 29 - 32
  • [30] Probabilistic Joint Feature Selection for Multi-task Learning
    Xiong, Tao
    Bi, Jinbo
    Rao, Bharat
    Cherkassky, Vladimir
    PROCEEDINGS OF THE SEVENTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2007, : 332 - +