Joint Extraction of Nested Entities and Relations Based on Multi-task Learning

被引:0
|
作者
Wan, Jing [1 ]
Qin, Chunyu [1 ]
Yang, Jing [1 ]
机构
[1] Beijing Univ Chem Technol, Beijing 100029, Peoples R China
关键词
Nested named entity recognition; Relation extraction; Multi-task learning; Parameter sharing; Annotation strategy;
D O I
10.1007/978-3-031-40286-9_30
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Nested named entity recognition and relation extraction are two crucial tasks in information extraction. Traditional systems often treat them as separate, sequential tasks, which can lead to error propagation. To mitigate this issue, we present a joint extraction model for nested named entities and relations based on a two-level structure, which facilitates joint learning of these subtasks through parameter sharing. Initially, we employ a hierarchical network to identify nested entities. Then, to extract relationships between the nested entities identified at different layers, we introduce multiple rounds of hierarchical relation extraction, creating a dual-dynamic hierarchical network structure. Moreover, as there is a current lack of suitable tagging schemes, we propose a novel tagging scheme grounded in a hierarchical structure. Utilizing this approach, we relabel three datasets: Genia, KBP, and NYT. Experimental results indicate that our proposed joint extraction model significantly outperforms traditional methods in both tasks.
引用
收藏
页码:368 / 382
页数:15
相关论文
共 50 条
  • [1] A Unified Multi-Task Learning Framework for Joint Extraction of Entities and Relations
    Zhao, Tianyang
    Yan, Zhao
    Cao, Yunbo
    Li, Zhoujun
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14524 - 14531
  • [2] CopyMTL: Copy Mechanism for Joint Extraction of Entities and Relations with Multi-Task Learning
    Zeng, Daojian
    Zhang, Haoran
    Liu, Qianying
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 9507 - 9514
  • [3] Joint Extraction Model for Entities and Events with Multi-task Deep Learning
    Chuanming Y.
    Hongjun L.
    Zhengang Z.
    Data Analysis and Knowledge Discovery, 2022, 6 (2-3) : 117 - 128
  • [4] Joint Chinese Event Extraction Based Multi-task Learning
    He R.-F.
    Duan S.-Y.
    Ruan Jian Xue Bao/Journal of Software, 2019, 30 (04): : 1015 - 1030
  • [5] Learning Sparse Task Relations in Multi-Task Learning
    Zhang, Yu
    Yang, Qiang
    THIRTY-FIRST AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2017, : 2914 - 2920
  • [6] Joint Extraction of Entities and Relations Based on Deep Learning: A Survey
    Zhang Y.-S.
    Liu S.-K.
    Liu Y.
    Ren L.
    Xin Y.-H.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2023, 51 (04): : 1093 - 1116
  • [7] Argumentation Mining Based on Multi-task Joint Learning
    Liao X.
    Ni J.
    Wei J.
    Wu Y.
    Chen G.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2019, 32 (12): : 1072 - 1079
  • [8] Reinforcement Learning for Joint Extraction of Entities and Relations
    Liu, Wenpeng
    Cao, Yanan
    Liu, Yanbing
    Hu, Yue
    Tan, Jianlong
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2018, PT II, 2018, 11140 : 263 - 272
  • [9] Multi-Task Learning for Relation Extraction
    Zhou, Kai
    Luo, Xiangfeng
    Wang, Hao
    Xu, Richard
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2019), 2019, : 1480 - 1487
  • [10] Recognizing Chinese Medical Literature Entities Based on Multi-Task and Transfer Learning
    Han P.
    Gu L.
    Ye D.
    Chen W.
    Data Analysis and Knowledge Discovery, 2023, 7 (09) : 136 - 145