Semi-supervised adaptive anti-noise meta-learning for few-shot industrial gearbox fault diagnosis

被引:2
|
作者
Hu, Junwei [1 ]
Xie, Chao [2 ]
机构
[1] Hubei Normal Univ, Sch Elect Engn & Automat, Huangshi 435002, Hubei, Peoples R China
[2] State Grid Hubei Elect Power Co LTD, Huangshi Power Supply Co, Huangshi 435000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; semi-supervised meta-learning; noisy samples; sample-level attention; adaptive metric;
D O I
10.1088/1361-6501/ad662d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Real-time and accurate predictive maintenance of industrial equipment is fundamental for ensuring the safety and stability of advanced manufacturing processes. Current fault diagnosis methods based on data mining rely on a large number of labeled samples, and obtaining sufficient labeled data for diagnosing industrial equipment faults is challenging. Meta-learning can achieve the diagnosis of few-shot samples to a certain extent, but the effect is not ideal. Semi-supervision can effectively leverage a large number of unlabeled samples, which is of great practical significance for handling scenarios involving limited labeled samples. However, noise interference can occur when unlabeled samples appear that do not belong to known categories. Therefore, this study proposes adaptive semi-supervised meta-learning networks (ASMNs) for noisy few-shot gearbox fault diagnosis. Firstly, a residual network with a Morlet Wavelet layer is used to extract signal features. Next, sample-level attention is defined to select unlabeled samples that are more similar to labeled sample prototypes, thereby reducing the influence of noisy samples. The adaptive metric is used to obtain the relational distance functions of labeled samples and unlabeled samples. Adaptive semi-supervised ASMNs uses unlabeled data to refine prototypes for better fault diagnosis. The effectiveness and anti-noise performance of the proposed method are verified by using two gearbox datasets with various few-shot noise scenarios.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Few-shot switch machine fault diagnosis based on Bayesian meta-learning
    Zhao P.
    Wang X.
    Fu M.
    Journal of Railway Science and Engineering, 2023, 20 (10) : 4008 - 4020
  • [22] Gradient-Oriented Prioritization in Meta-Learning for Enhanced Few-Shot Fault Diagnosis in Industrial Systems
    Sun, Dexin
    Fan, Yunsheng
    Wang, Guofeng
    APPLIED SCIENCES-BASEL, 2024, 14 (01):
  • [23] Few-shot Object Detection as a Semi-supervised Learning Problem
    Bailer, Werner
    Fassold, Hannes
    19TH INTERNATIONAL CONFERENCE ON CONTENT-BASED MULTIMEDIA INDEXING, CBMI 2022, 2022, : 131 - 135
  • [24] An Embarrassingly Simple Approach to Semi-Supervised Few-Shot Learning
    Wei, Xiu-Shen
    Xu, He-Yang
    Zhang, Faen
    Peng, Yuxin
    Zhou, Wei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [25] Semi-Supervised Few-Shot Learning with Prototypical Random Walks
    Ayyad, Ahmed
    Li, Yuchen
    Muaz, Raden
    Albarqouni, Shadi
    Elhoseiny, Mohamed
    AAAI WORKSHOP ON META-LEARNING AND METADL CHALLENGE, VOL 140, 2021, 140 : 45 - 57
  • [26] SEMI-SUPERVISED FEW-SHOT CLASS-INCREMENTAL LEARNING
    Cui, Yawen
    Xiong, Wuti
    Tavakolian, Mohammad
    Liu, Li
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1239 - 1243
  • [27] Few-shot bearing fault diagnosis based on meta-learning with discriminant space optimization
    Zhang, Dengming
    Zheng, Kai
    Bai, Yin
    Yao, Dengke
    Yang, Dewei
    Wang, Shaowang
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2022, 33 (11)
  • [28] Meta-learning for few-shot bearing fault diagnosis under complex working conditions
    Li, Chuanjiang
    Li, Shaobo
    Zhang, Ansi
    He, Qiang
    Liao, Zihao
    Hu, Jianjun
    NEUROCOMPUTING, 2021, 439 : 197 - 211
  • [29] Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning
    Zhang, Shen
    Ye, Fei
    Wang, Bingnan
    Habetler, Thomas G.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2021, 57 (05) : 4754 - 4764
  • [30] Fast Adaptive Meta-Learning for Few-Shot Image Generation
    Phaphuangwittayakul, Aniwat
    Guo, Yi
    Ying, Fangli
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 2205 - 2217