Semi-supervised adaptive anti-noise meta-learning for few-shot industrial gearbox fault diagnosis

被引:2
|
作者
Hu, Junwei [1 ]
Xie, Chao [2 ]
机构
[1] Hubei Normal Univ, Sch Elect Engn & Automat, Huangshi 435002, Hubei, Peoples R China
[2] State Grid Hubei Elect Power Co LTD, Huangshi Power Supply Co, Huangshi 435000, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
fault diagnosis; semi-supervised meta-learning; noisy samples; sample-level attention; adaptive metric;
D O I
10.1088/1361-6501/ad662d
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Real-time and accurate predictive maintenance of industrial equipment is fundamental for ensuring the safety and stability of advanced manufacturing processes. Current fault diagnosis methods based on data mining rely on a large number of labeled samples, and obtaining sufficient labeled data for diagnosing industrial equipment faults is challenging. Meta-learning can achieve the diagnosis of few-shot samples to a certain extent, but the effect is not ideal. Semi-supervision can effectively leverage a large number of unlabeled samples, which is of great practical significance for handling scenarios involving limited labeled samples. However, noise interference can occur when unlabeled samples appear that do not belong to known categories. Therefore, this study proposes adaptive semi-supervised meta-learning networks (ASMNs) for noisy few-shot gearbox fault diagnosis. Firstly, a residual network with a Morlet Wavelet layer is used to extract signal features. Next, sample-level attention is defined to select unlabeled samples that are more similar to labeled sample prototypes, thereby reducing the influence of noisy samples. The adaptive metric is used to obtain the relational distance functions of labeled samples and unlabeled samples. Adaptive semi-supervised ASMNs uses unlabeled data to refine prototypes for better fault diagnosis. The effectiveness and anti-noise performance of the proposed method are verified by using two gearbox datasets with various few-shot noise scenarios.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Semi-supervised meta-learning networks with squeeze-and-excitation attention for few-shot fault diagnosis
    Feng, Yong
    Chen, Jinglong
    Zhang, Tianci
    He, Shuilong
    Xu, Enyong
    Zhou, Zitong
    ISA TRANSACTIONS, 2022, 120 : 383 - 401
  • [2] TASML: Two-Stage Adaptive Semi-supervised Meta-learning for Few-Shot Learning
    Ren, Zixin
    Tao, Ze
    Zhang, Jian
    Jiang, Guilin
    Xu, Liang
    WEB AND BIG DATA, PT I, APWEB-WAIM 2023, 2024, 14331 : 206 - 221
  • [3] Few-shot fault diagnosis of turnout switch machine based on flexible semi-supervised meta-learning network
    He, Yiling
    He, Deqiang
    Lao, Zhenpeng
    Jin, Zhenzhen
    Miao, Jian
    Lai, Zhiping
    Chen, Yanjun
    KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [4] Meta-Learning With Adaptive Learning Rates for Few-Shot Fault Diagnosis
    Chang, Liang
    Lin, Yan-Hui
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2022, 27 (06) : 5948 - 5958
  • [5] Semi-supervised Few-shot Network Intrusion Detection based on Meta-learning
    Liu, Yao
    Zhou, Le
    Liu, Qiao
    Lan, Tian
    Bai, Xiaoyu
    Zhou, Tinghao
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 495 - 502
  • [6] Semi-supervised Meta-learning for Cross-domain Few-shot Intent Classification
    Li, Judith Yue
    Zhang, Jiong
    1ST WORKSHOP ON META LEARNING AND ITS APPLICATIONS TO NATURAL LANGUAGE PROCESSING (METANLP 2021), 2021, : 67 - 75
  • [7] Federated Meta-Learning Framework for Few-shot Fault Diagnosis in Industrial IoT
    Chen, Jiao
    Tang, Jianhua
    Chen, Jie
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 2993 - 2998
  • [8] A meta-learning network with anti-interference for few-shot fault diagnosis
    Zhao, Zhiqian
    Zhao, Runchao
    Wu, Xianglin
    Hu, Xiuli
    Che, Renwei
    Zhang, Xiang
    Jiao, Yinghou
    NEUROCOMPUTING, 2023, 552
  • [9] Few-shot bearing fault diagnosis by semi-supervised meta-learning with graph convolutional neural network under variable working conditions
    Liu, Zhen
    Peng, Zhenrui
    MEASUREMENT, 2025, 240
  • [10] Meta-Learning Guided Few-Shot Learning Method for Gearbox Fault Diagnosis Under Limited Data Conditions
    Zhang, Ming
    Wang, Duo
    Xu, Yuchun
    PROCEEDINGS OF INCOME-VI AND TEPEN 2021: PERFORMANCE ENGINEERING AND MAINTENANCE ENGINEERING, 2023, 117 : 491 - 503