Geometric Properties of Harmonic Function Affiliated With Fractional Operator

被引:0
|
作者
Priya, Kuppuraj Divya [1 ]
Thilagavathi, K. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, India
关键词
univalent function; harmonic function; Mittag-Leffler ffl er function; convolution; convex; extreme points; modified trembley operator;
D O I
10.28924/2291-8639-22-2024-133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper's goal is to discover new results for the harmonic univalent functions G = upsilon + eta(sic) defined in the open unit disc rho = {z : |z| < 1}. Examining KS indicates the set of all analytic harmonic functions of form G in the open unit disc rho. The convolution featuring the Mittag-Leffler function and fractional operator is applied to generate the family of harmonic univalent V-KS. Motivated by Kamali [9], we present a novel of kamali class with V-KS(b) brand-new class of harmonic univalent functions beta(gamma,b,epsilon,nu)(alpha,beta,z) inspiring inequality. Analysing Mittag-Leffler function convolution with modified tremblay operator inequality as a necessary and sufficient condition for univalent harmonic functions related to specific generalised Mittag-Leffler functions to be in the function class V-KS(b) is the aim of this research. Moreover, we discover extreme points, a distortion theorem, convolution properties, and convex combinations for the functions in V-KS(b).
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Fractional Laplace Operator and Meijer G-function
    Dyda, Bartlomiej
    Kuznetsov, Alexey
    Kwasnicki, Mateusz
    CONSTRUCTIVE APPROXIMATION, 2017, 45 (03) : 427 - 448
  • [42] On fractional maximal function and fractional integrals associated with the Dunkl operator on the real line
    Guiyev, Vagif S.
    Mammadov, Yagub Y.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 353 (01) : 449 - 459
  • [43] Geometric Features of a Multivalent Function Pertaining to Fractional Operators
    Priya, K. Divya
    Thilagavathi, K.
    CONTEMPORARY MATHEMATICS, 2024, 5 (04): : 5434 - 5453
  • [44] Geometric properties of the gamma function
    Ahern, P
    Rudin, W
    AMERICAN MATHEMATICAL MONTHLY, 1996, 103 (08): : 678 - 681
  • [45] Geometric properties of the zeta function
    Montgomery, Hugh L.
    Thompson, John G.
    ACTA ARITHMETICA, 2012, 155 (04) : 373 - 396
  • [46] GEOMETRIC PROPERTIES OF WRIGHT FUNCTION
    Maharana, Sudhananda
    Prajapat, Jugal K.
    Bansal, Deepak
    MATHEMATICA BOHEMICA, 2018, 143 (01): : 99 - 111
  • [47] Compactness of quadruple band matrix operator and geometric properties
    Bisgin, Mustafa Cemil
    Sonmez, Abdulcabbar
    ANNALES UNIVERSITATIS PAEDAGOGICAE CRACOVIENSIS-STUDIA MATHEMATICA, 2022, 21 (01) : 17 - 32
  • [48] Gradient Estimates of q-Harmonic Functions of Fractional Schrödinger Operator
    Tadeusz Kulczycki
    Potential Analysis, 2013, 39 : 69 - 98
  • [49] Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations
    Jérémy Martin
    Karel Pravda-Starov
    Journal of Evolution Equations, 2021, 21 : 1059 - 1087
  • [50] Some methods for solving equations with an operator function and applications for problems with a fractional power of an operator
    Vabishchevich, Petr N. N.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2022, 407