Geometric Properties of Harmonic Function Affiliated With Fractional Operator

被引:0
|
作者
Priya, Kuppuraj Divya [1 ]
Thilagavathi, K. [1 ]
机构
[1] Vellore Inst Technol, Sch Adv Sci, Dept Math, Vellore 632014, India
关键词
univalent function; harmonic function; Mittag-Leffler ffl er function; convolution; convex; extreme points; modified trembley operator;
D O I
10.28924/2291-8639-22-2024-133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper's goal is to discover new results for the harmonic univalent functions G = upsilon + eta(sic) defined in the open unit disc rho = {z : |z| < 1}. Examining KS indicates the set of all analytic harmonic functions of form G in the open unit disc rho. The convolution featuring the Mittag-Leffler function and fractional operator is applied to generate the family of harmonic univalent V-KS. Motivated by Kamali [9], we present a novel of kamali class with V-KS(b) brand-new class of harmonic univalent functions beta(gamma,b,epsilon,nu)(alpha,beta,z) inspiring inequality. Analysing Mittag-Leffler function convolution with modified tremblay operator inequality as a necessary and sufficient condition for univalent harmonic functions related to specific generalised Mittag-Leffler functions to be in the function class V-KS(b) is the aim of this research. Moreover, we discover extreme points, a distortion theorem, convolution properties, and convex combinations for the functions in V-KS(b).
引用
收藏
页数:14
相关论文
共 50 条
  • [1] GEOMETRIC PROPERTIES AND COMPACT OPERATOR ON FRACTIONAL RIESZ DIFFERENCE SPACE
    Yaying, Taja
    Hazarika, Bipan
    Esi, Ayhan
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2023, 47 (04): : 545 - 566
  • [2] Some Geometric Properties of Analytic Functions Involving a New Fractional Operator
    Sharma, Poonam
    Raina, R. K.
    Salagean, G. S.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) : 4591 - 4605
  • [3] Some Geometric Properties of Analytic Functions Involving a New Fractional Operator
    Poonam Sharma
    R. K. Raina
    G. S. Sălăgean
    Mediterranean Journal of Mathematics, 2016, 13 : 4591 - 4605
  • [4] A NEW SUBCLASS OF HARMONIC UNIVALENT FUNCTION DEFINED BY FRACTIONAL CALCULUS OPERATOR WITH FIXED POINT
    Dixit, Poonam
    Shukla, Puneet
    JOURNAL OF RAJASTHAN ACADEMY OF PHYSICAL SCIENCES, 2015, 14 (02): : 157 - 166
  • [5] Geometric properties of the curvature operator
    Gilkey, P
    GEOMETRY AND TOPOLOGY OF SUBMANIFOLDS X: DIFFERENTIAL GEOMETRY IN HONOR OF PROF S.S. CHERN, 2000, : 62 - 70
  • [6] Geometric Properties of an Integral Operator
    Verma, Sarika
    Gupta, Sushma
    Singh, Sukhjit
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2017, 40 (01) : 345 - 360
  • [7] Geometric Properties of an Integral Operator
    Sarika Verma
    Sushma Gupta
    Sukhjit Singh
    Bulletin of the Malaysian Mathematical Sciences Society, 2017, 40 : 345 - 360
  • [8] Spectral properties of the fractional Fokker-Planck operator for the Levy flight in a harmonic potential
    Toenjes, Ralf
    Sokolov, Igor M.
    Postnikov, Eugene B.
    EUROPEAN PHYSICAL JOURNAL B, 2014, 87 (12):
  • [9] The geometric properties of harmonic function on 2-dimensional Riemannian manifolds
    Wang, Peihe
    Wang, Xinjing
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2014, 103 : 2 - 8
  • [10] Certain geometric properties of the fractional integral of the Bessel function of the first kind
    Oros, Georgia Irina
    Oros, Gheorghe
    Bardac-Vlada, Daniela Andrada
    AIMS MATHEMATICS, 2024, 9 (03): : 7095 - 7110