DDoS Mitigation while Preserving QoS: A Deep Reinforcement Learning-Based Approach

被引:0
|
作者
Khozam, Shurok [1 ]
Blanc, Gregory [1 ]
Tixeuil, Sebastien [2 ]
Totel, Eric [1 ]
机构
[1] Inst Polytech Paris, Telecom SudParis, SAMOVAR, Palaiseau, France
[2] Sorbonne Univ, LIP6, Paris, France
关键词
Reinforcement Learning; Distributed Denial of Service; Quality of Service; Software-Defined Networking;
D O I
10.1109/NetSoft60951.2024.10588889
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The deployment of 5G networks has significantly improved connectivity, providing remarkable speed and capacity. These networks rely on Software-Defined Networking (SDN) to enhance control and flexibility. However, this advancement poses critical challenges including expanded attack surface due to network virtualization and the risk of unauthorized access to critical infrastructure. Since traditional cybersecurity methods are inadequate in addressing the dynamic nature of modern cyber attacks, employing artificial intelligence (AI), and deep reinforcement learning (DRL) in particular, was investigated to enhance 5G networks security. This interest arises from the ability of these techniques to dynamically respond and adapt their defense strategies according to encountered situations and real-time threats. Our proposed mitigation system uses a DRL framework, enabling an intelligent agent to dynamically adjust its defense strategies against a range of DDoS attacks, exploiting ICMP, TCP SYN, and UDP, within an SDN environment designed to mirror real-life user behaviors. This approach aims to maintain the network's performance while concurrently mitigating the impact of the real-time attacks, by providing adaptive and automated countermeasures according to the network's situation.
引用
收藏
页码:369 / 374
页数:6
相关论文
共 50 条
  • [21] Deep Reinforcement Learning-Based Resource Allocation for Satellite Internet of Things with Diverse QoS Guarantee
    Tang, Siqi
    Pan, Zhisong
    Hu, Guyu
    Wu, Yang
    Li, Yunbo
    SENSORS, 2022, 22 (08)
  • [22] Deep Reinforcement Learning-based Quantization for Federated Learning
    Zheng, Sihui
    Dong, Yuhan
    Chen, Xiang
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [23] A Deep Learning-Based DDoS Detection Framework for Internet of Things
    Ma, Li
    Chai, Ying
    Cui, Lei
    Ma, Dongchao
    Fu, Yingxun
    Xiao, Ailing
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [24] DEEP REINFORCEMENT LEARNING-BASED IRRIGATION SCHEDULING
    Yang, Y.
    Hu, J.
    Porter, D.
    Marek, T.
    Heflin, K.
    Kong, H.
    Sun, L.
    TRANSACTIONS OF THE ASABE, 2020, 63 (03) : 549 - 556
  • [25] Deep Learning-based DDoS Detection in Network Traffic Data
    Hadi, Teeb Hussein
    INTERNATIONAL JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING SYSTEMS, 2024, 15 (05) : 407 - 414
  • [26] Deep Learning-Based Approach for Detecting DDoS Attack on Software-Defined Networking Controller
    Mansoor, Amran
    Anbar, Mohammed
    Bahashwan, Abdullah Ahmed
    Alabsi, Basim Ahmad
    Rihan, Shaza Dawood Ahmed
    SYSTEMS, 2023, 11 (06):
  • [27] Rescue path planning for urban flood: A deep reinforcement learning-based approach
    Li, Xiao-Yan
    Wang, Xia
    RISK ANALYSIS, 2024,
  • [28] A deep reinforcement learning-based approach to onboard trajectory generation for hypersonic vehicles
    Bao, C. Y.
    Zhou, X.
    Wang, P.
    He, R. Z.
    Tang, G. J.
    AERONAUTICAL JOURNAL, 2023, 127 (1315): : 1638 - 1658
  • [29] Deep reinforcement learning-based approach for rumor influence minimization in social networks
    Jiang, Jiajian
    Chen, Xiaoliang
    Huang, Zexia
    Li, Xianyong
    Du, Yajun
    APPLIED INTELLIGENCE, 2023, 53 (17) : 20293 - 20310
  • [30] A Deep Reinforcement Learning-Based Approach to Intelligent Powertrain Control for Automated Vehicles
    Chen, I-Ming
    Zhao, Cong
    Chan, Ching-Yao
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2620 - 2625