Multi-scale Refocusing Attention Siamese Network

被引:0
|
作者
Liu, Guoqiang [1 ]
Chen, Zhe [1 ]
Shen, Guangze [2 ]
机构
[1] Hohai Univ, Coll Informat Sci & Engn, Changzhou 213200, Peoples R China
[2] Nanjing Hydraul Res Inst, Dept Dam Safety Management, Nanjing 210029, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Change detection; Deep learning; Siamese Networks; Multi-scale refocusing;
D O I
10.1109/ICGMRS62107.2024.10581353
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Deep learning has achieved significant success in change detection due to its ability to automatically extract complex features. Recent research has focused on utilizing attention mechanisms. However, most attention mechanisms still struggle to fully exploit the local and global contextual relationships and often suffer from high computational complexity and lack robustness against pseudo-changes. Therefore, this paper proposes a method called Multi-scale Refocused Attention Siamese network, which captures change regions through multi-scale attention mechanisms and enhances model with prior knowledge for complex environments, thereby improving change detection capability. Experimental results demonstrate that the proposed method achieves F1 scores of 95.9% and 90.3% on two commonly used change detection datasets, CDD and WHU-CD respectively, proving its effectiveness and superiority in enhancing change detection performance.
引用
下载
收藏
页码:42 / 46
页数:5
相关论文
共 50 条
  • [31] A Multi-scale and Multi-attention Network for Skin Lesion Segmentation
    Wu, Cong
    Zhang, Hang
    Chen, Dingsheng
    Gan, Haitao
    NEURAL INFORMATION PROCESSING, ICONIP 2023, PT IV, 2024, 14450 : 537 - 550
  • [32] Multi-scale multi-attention network for diabetic retinopathy grading
    Xia, Haiying
    Long, Jie
    Song, Shuxiang
    Tan, Yumei
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (01):
  • [33] Parallel multi-scale network with attention mechanism for pancreas segmentation
    Long, Jianwu
    Song, Xinlei
    An, Yong
    Li, Tong
    Zhu, Jiangzhou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (01) : 110 - 119
  • [34] Multi-scale attention network for image super-resolution
    Wang, Li
    Shen, Jie
    Tang, E.
    Zheng, Shengnan
    Xu, Lizhong
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2021, 80
  • [35] MFANet: Multi-scale feature fusion network with attention mechanism
    Wang, Gaihua
    Gan, Xin
    Cao, Qingcheng
    Zhai, Qianyu
    VISUAL COMPUTER, 2023, 39 (07): : 2969 - 2980
  • [36] Multi-scale attention and dilation network for small defect detection *
    Xiang, Xinyuan
    Liu, Meiqin
    Zhang, Senlin
    Wei, Ping
    Chen, Badong
    PATTERN RECOGNITION LETTERS, 2023, 172 : 82 - 88
  • [37] MSIANet: Multi-scale Interactive Attention Crowd Counting Network
    Zhang, Shihui
    Zhao, Weibo
    Wang, Lei
    Wang, Wei
    Li, Qunpeng
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2023, 45 (06) : 2236 - 2245
  • [38] Multi-Scale Attention-Guided Network for mammograms classification
    Xu, Chunbo
    Lou, Meng
    Qi, Yunliang
    Wang, Yiming
    Pi, Jiande
    Ma, Yide
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [39] A Multi-Scale Residual Attention Network for Retinal Vessel Segmentation
    Jiang, Yun
    Yao, Huixia
    Wu, Chao
    Liu, Wenhuan
    SYMMETRY-BASEL, 2021, 13 (01): : 1 - 16
  • [40] Progressive multi-scale attention network for compression artifact reduction
    Zhang, Xinyan
    Gao, Peng
    Li, Guitao
    Yin, Liuguo
    JOURNAL OF ELECTRONIC IMAGING, 2021, 30 (04)