Automatically Extracting and Utilizing EEG Channel Importance Based on Graph Convolutional Network for Emotion Recognition

被引:0
|
作者
Yang, Kun [1 ,2 ]
Yao, Zhenning [1 ,2 ]
Zhang, Keze [1 ,2 ]
Xu, Jing [3 ]
Zhu, Li [1 ,2 ]
Cheng, Shichao [1 ,2 ]
Zhang, Jianhai [1 ,2 ]
机构
[1] Hangzhou Dianzi Univ, Sch Comp Sci & Technol, Hangzhou 310018, Peoples R China
[2] Key Lab Brain Machine Collaborat Intelligence Zhej, Hangzhou 310018, Peoples R China
[3] Zhejiang Gongshang Univ, Sch Stat & Math, Hangzhou 310018, Peoples R China
关键词
Brain modeling; Emotion recognition; Electroencephalography; Feature extraction; Convolution; Data mining; Task analysis; EEG; emotion recognition; graph convolu- tional network (GCN); core network; channel importance; channel convolution; SENTIMENT CLASSIFICATION;
D O I
10.1109/JBHI.2024.3404146
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph convolutional network (GCN) based on the brain network has been widely used for EEG emotion recognition. However, most studies train their models directly without considering network dimensionality reduction beforehand. In fact, some nodes and edges are invalid information or even interference information for the current task. It is necessary to reduce the network dimension and extract the core network. To address the problem of extracting and utilizing the core network, a core network extraction model (CWGCN) based on channel weighting and graph convolutional network and a graph convolutional network model (CCSR-GCN) based on channel convolution and style-based recalibration for emotion recognition have been proposed. The CWGCN model automatically extracts the core network and the channel importance parameter in a data-driven manner. The CCSR-GCN model innovatively uses the output information of the CWGCN model to identify the emotion state. The experimental results on SEED show that: 1) the core network extraction can help improve the performance of the GCN model; 2) the models of CWGCN and CCSR-GCN achieve better results than the currently popular methods. The idea and its implementation in this paper provide a novel and successful perspective for the application of GCN in brain network analysis of other specific tasks.
引用
收藏
页码:4588 / 4598
页数:11
相关论文
共 50 条
  • [1] CR-GCN: Channel-Relationships-Based Graph Convolutional Network for EEG Emotion Recognition
    Jia, Jingjing
    Zhang, Bofeng
    Lv, Hehe
    Xu, Zhikang
    Hu, Shengxiang
    Li, Haiyan
    BRAIN SCIENCES, 2022, 12 (08)
  • [2] Graph Convolutional Network With Connectivity Uncertainty for EEG-Based Emotion Recognition
    Gao, Hongxiang
    Wang, Xingyao
    Chen, Zhenghua
    Wu, Min
    Cai, Zhipeng
    Zhao, Lulu
    Li, Jianqing
    Liu, Chengyu
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (10) : 5917 - 5928
  • [3] Multimodal EEG Emotion Recognition Based on the Attention Recurrent Graph Convolutional Network
    Chen, Jingxia
    Liu, Yang
    Xue, Wen
    Hu, Kailei
    Lin, Wentao
    INFORMATION, 2022, 13 (11)
  • [4] Adaptive Hierarchical Graph Convolutional Network for EEG Emotion Recognition
    Xue, Yunlong
    Zheng, Wenming
    Zong, Yuan
    Chang, Hongli
    Jiang, Xingxun
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [5] PGCN: Pyramidal Graph Convolutional Network for EEG Emotion Recognition
    Jin, Ming
    Du, Changde
    He, Huiguang
    Cai, Ting
    Li, Jinpeng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 9070 - 9082
  • [6] An improved graph convolutional neural network for EEG emotion recognition
    Xu, Bingyue
    Zhang, Xin
    Zhang, Xiu
    Sun, Baiwei
    Wang, Yujie
    Neural Computing and Applications, 2024, 36 (36) : 23049 - 23060
  • [7] EEG Emotion Classification Based on Graph Convolutional Network
    Fan, Zhiqiang
    Chen, Fangyue
    Xia, Xiaokai
    Liu, Yu
    APPLIED SCIENCES-BASEL, 2024, 14 (02):
  • [8] Hierarchical Dynamic Graph Convolutional Network With Interpretability for EEG-Based Emotion Recognition
    Ye, Mengqing
    Chen, C. L. Philip
    Zhang, Tong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, : 1 - 12
  • [9] A Channel-Fused Dense Convolutional Network for EEG-Based Emotion Recognition
    Gao, Zhongke
    Wang, Xinmin
    Yang, Yuxuan
    Li, Yanli
    Ma, Kai
    Chen, Guanrong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (04) : 945 - 954
  • [10] Graph-Embedded Convolutional Neural Network for Image-Based EEG Emotion Recognition
    Song, Tengfei
    Zheng, Wenming
    Liu, Suyuan
    Zong, Yuan
    Cui, Zhen
    Li, Yang
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, 2022, 10 (03) : 1399 - 1413