Minimal varieties of PI-algebras with graded involution

被引:0
|
作者
Benanti, F. S. [1 ]
Di Vincenzo, O. M. [2 ]
Valenti, A. [3 ]
机构
[1] Univ Palermo, Dipartimento Matemat & Informat, Via Archirafi 34, I-90123 Palermo, Italy
[2] Univ Basilicata, Dipartimento Matemat Informat & Econ, Via Ateneo Lucano 10, I-85100 Potenza, Italy
[3] Univ Palermo, Dipartimento Ingn, Viale Sci, I-90128 Palermo, Italy
关键词
Graded algebras; Graded involutions; Codimension; Mimimal varieties; POLYNOMIAL-IDENTITIES; CODIMENSION GROWTH; GROUP GRADINGS; SIMPLE JORDAN;
D O I
10.1016/j.laa.2024.07.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let F be an algebraically closed field of characteristic zero and G a cyclic group of odd prime order. We consider the class of finite dimensional (G, *)-algebras, namely G-graded algebras endowed with graded involution *, and we characterize the varieties generated by algebras of this class which are minimal with respect to the (G, *)-exponent. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons .org /licenses /by /4 .0/).
引用
收藏
页码:459 / 507
页数:49
相关论文
共 50 条