Pareto optimality in infinite horizon linear quadratic differential games

被引:43
|
作者
Reddy, Puduru Viswanadha [1 ]
Engwerda, Jacob Christiaan [2 ]
机构
[1] HEC Montreal, GERAD, Montreal, PQ H3T 2A7, Canada
[2] Tilburg Univ, Dept Econometr & OR, NL-5000 LE Tilburg, Netherlands
关键词
Pareto optimality; Infinite horizon optimal control; Linear quadratic differential games; SUFFICIENT CONDITIONS; MAXIMUM PRINCIPLE;
D O I
10.1016/j.automatica.2013.03.004
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this article we derive conditions for the existence of Pareto optimal solutions for linear quadratic infinite horizon cooperative differential games. First, we present a necessary and sufficient characterization for Pareto optimality which translates to solving a set of constrained optimal control problems with a special structure. Next, we show that if the dynamical system is controllable, certain transversality conditions hold true, and as a result all the Pareto candidates can be obtained by solving a weighted sum optimal control problem. Further, exploiting the linear structure we investigate the relationship between Pareto optimality and weighted sum minimization. Finally, for the scalar case, we present an algorithm to find all the Pareto optimal solutions assuming mild conditions on the control space. (C) 2013 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:1705 / 1714
页数:10
相关论文
共 50 条
  • [41] On a Constrained Infinite-Time Horizon Linear Quadratic Game
    Krastanov, Mikhail, I
    Rozenov, Rossen
    Stefanov, Boyan K.
    DYNAMIC GAMES AND APPLICATIONS, 2023, 13 (03) : 843 - 858
  • [42] On a Constrained Infinite-Time Horizon Linear Quadratic Game
    Mikhail I. Krastanov
    Rossen Rozenov
    Boyan K. Stefanov
    Dynamic Games and Applications, 2023, 13 : 843 - 858
  • [43] Infinite Horizon Linear Quadratic Gene Regulation in Fluctuating Environments
    Safaei, Farshad R. Pour
    Hespanha, Joao P.
    Proulx, Stephen R.
    2012 IEEE 51ST ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2012, : 2298 - 2303
  • [44] Stochastic Linear Quadratic Optimal Control Problems in Infinite Horizon
    Jingrui Sun
    Jiongmin Yong
    Applied Mathematics & Optimization, 2018, 78 : 145 - 183
  • [45] Transversality conditions for infinite horizon optimality: Higher order differential problems
    Okumura, Ryuhei
    Cai, Dapeng
    Nitta, Takashi Gyoshin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1980 - E1984
  • [46] Indefinite stochastic linear quadratic control in infinite time horizon
    Tang Huaibin
    Wu Zhen
    Zhang Weihai
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 3, 2007, : 502 - +
  • [47] Stochastic Linear Quadratic Optimal Control Problems in Infinite Horizon
    Sun, Jingrui
    Yong, Jiongmin
    APPLIED MATHEMATICS AND OPTIMIZATION, 2018, 78 (01): : 145 - 183
  • [48] A CONSISTENT, CLOSED-LOOP SOLUTION FOR INFINITE-HORIZON, LINEAR-QUADRATIC, DYNAMIC STACKELBERG GAMES
    ZADROZNY, P
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1988, 12 (01): : 155 - 159
  • [49] INFINITE HORIZON LINEAR QUADRATIC OVERTAKING OPTIMAL CONTROL PROBLEMS
    Huang, Jianping
    Yong, Jiongmin
    Zhou, Hua-Cheng
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2021, 59 (02) : 1312 - 1340
  • [50] Mixed constrained infinite horizon linear quadratic optimal control
    Choi, J
    Lee, KS
    ASIAN JOURNAL OF CONTROL, 2003, 5 (03) : 412 - 418