Control of waves on Lorentzian manifolds with curvature bounds

被引:0
|
作者
Jena, Vaibhav Kumar [1 ]
Shao, Arick [2 ]
机构
[1] TIFR Ctr Applicable Math, Bangalore 560065, Karnataka, India
[2] Queen Mary Univ London, Sch Math Sci, London E1 4NS, England
关键词
Wave equations; controllability; Carleman estimates; Lorentzian manifolds; EXACT CONTROLLABILITY; OBSERVABILITY INEQUALITIES; GLOBAL UNIQUENESS; CARLEMAN; EQUATIONS; STABILIZATION;
D O I
10.1051/cocv/2024056
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We prove boundary controllability results for wave equations (with lower-order terms) on Lorentzian manifolds with time-dependent geometry satisfying suitable curvature bounds. The main ingredient is a novel global Carleman estimate on Lorentzian manifolds that is supported in the exterior of a null (or characteristic) cone, which leads to both an observability inequality and bounds for the corresponding constant. The Carleman estimate also yields a unique continuation result on the null cone exterior, which has applications toward inverse problems for linear waves on Lorentzian backgrounds.
引用
收藏
页数:60
相关论文
共 50 条
  • [21] Homogeneity of Lorentzian three-manifolds with recurrent curvature
    Garcia-Rio, Eduardo
    Gilkey, Peter B.
    Nikcevic, Stana
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (01) : 32 - 47
  • [22] Lorentzian G-manifolds of Constant Positive Curvature
    Mirzaie, Reza
    Ebrahimi, Jafar
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2024, 17 (02): : 551 - 558
  • [23] The spaces of curvature tensors for holonomy algebras of Lorentzian manifolds
    Galaev, AS
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 22 (01) : 1 - 18
  • [24] Lorentzian three-manifolds with special curvature operators
    Garcia-Rio, E.
    Haji Badali, A.
    Vazquez-Lorenzo, R.
    CLASSICAL AND QUANTUM GRAVITY, 2008, 25 (01)
  • [25] Lorentzian Calderón problem under curvature bounds
    Spyros Alexakis
    Ali Feizmohammadi
    Lauri Oksanen
    Inventiones mathematicae, 2022, 229 : 87 - 138
  • [26] SUBMANIFOLDS WITH CONSTANT CURVATURE, AND MAXIMAL SUBMANIFOLDS, OF LORENTZIAN MANIFOLDS
    PIGEAUD, P
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (11): : 749 - 752
  • [27] DECOMPOSITION-THEOREMS FOR LORENTZIAN MANIFOLDS WITH NONPOSITIVE CURVATURE
    BEEM, JK
    EHRLICH, PE
    MARKVORSEN, S
    GALLOWAY, GJ
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1985, 22 (01) : 29 - 42
  • [28] Harnack inequalities for curvature flows in Riemannian and Lorentzian manifolds
    Bryan, Paul
    Ivaki, Mohammad N.
    Scheuer, Julian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2020, 764 : 71 - 109
  • [29] THE CURVATURE HOMOGENEITY BOUND FOR LORENTZIAN FOUR-MANIFOLDS
    Milson, R.
    Pelavas, N.
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2009, 6 (01) : 99 - 127
  • [30] Curvature Properties of Lorentzian Manifolds with Large Isometry Groups
    Wafaa Batat
    Giovanni Calvaruso
    Barbara De Leo
    Mathematical Physics, Analysis and Geometry, 2009, 12 : 201 - 217