CT-based synthetic contrast-enhanced dual-energy CT generation using conditional denoising diffusion probabilistic model

被引:0
|
作者
Gao, Yuan [1 ,2 ]
Qiu, Richard L. J. [1 ,2 ]
Xie, Huiqiao [3 ]
Chang, Chih-Wei [1 ,2 ]
Wang, Tonghe [3 ]
Ghavidel, Beth [1 ,2 ]
Roper, Justin [1 ,2 ]
Zhou, Jun [1 ,2 ]
Yang, Xiaofeng [1 ,2 ]
机构
[1] Emory Univ, Dept Radiat Oncol, Atlanta, GA 30322 USA
[2] Emory Univ, Winship Canc Inst, Atlanta, GA 30322 USA
[3] Mem Sloan Kettering Canc Ctr, Dept Med Phys, New York, NY USA
来源
PHYSICS IN MEDICINE AND BIOLOGY | 2024年 / 69卷 / 16期
基金
美国国家卫生研究院;
关键词
diffusion probabilistic model; single-energy CT; contrast-enhanced; dual-energy CT; deep learning; CONSENSUS;
D O I
10.1088/1361-6560/ad67a1
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. The study aimed to generate synthetic contrast-enhanced Dual-energy CT (CE-DECT) images from non-contrast single-energy CT (SECT) scans, addressing the limitations posed by the scarcity of DECT scanners and the health risks associated with iodinated contrast agents, particularly for high-risk patients. Approach. A conditional denoising diffusion probabilistic model (C-DDPM) was utilized to create synthetic images. Imaging data were collected from 130 head-and-neck (HN) cancer patients who had undergone both non-contrast SECT and CE-DECT scans. Main Results. The performance of the C-DDPM was evaluated using Mean Absolute Error (MAE), Structural Similarity Index (SSIM), and Peak Signal-to-Noise Ratio (PSNR). The results showed MAE values of 27.37 +/- 3.35 Hounsfield Units (HU) for high-energy CT (H-CT) and 24.57 +/- 3.35HU for low-energy CT (L-CT), SSIM values of 0.74 +/- 0.22 for H-CT and 0.78 +/- 0.22 for L-CT, and PSNR values of 18.51 +/- 4.55 decibels (dB) for H-CT and 18.91 +/- 4.55 dB for L-CT. Significance. The study demonstrates the efficacy of the deep learning model in producing high-quality synthetic CE-DECT images, which significantly benefits radiation therapy planning. This approach provides a valuable alternative imaging solution for facilities lacking DECT scanners and for patients who are unsuitable for iodine contrast imaging, thereby enhancing the reach and effectiveness of advanced imaging in cancer treatment planning.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Comparison of radiomics models and dual-energy material decomposition to decipher abdominal lymphoma in contrast-enhanced CT
    Bernatz, Simon
    Koch, Vitali
    Dos Santos, Daniel Pinto
    Ackermann, Jorg
    Gruenewald, Leon D. D.
    Weitkamp, Inga
    Yel, Ibrahim
    Martin, Simon S. S.
    Lenga, Lukas
    Scholtz, Jan-Erik
    Vogl, Thomas J. J.
    Mahmoudi, Scherwin
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2023, 18 (10) : 1829 - 1839
  • [22] Comparison of radiomics models and dual-energy material decomposition to decipher abdominal lymphoma in contrast-enhanced CT
    Simon Bernatz
    Vitali Koch
    Daniel Pinto Dos Santos
    Jörg Ackermann
    Leon D. Grünewald
    Inga Weitkamp
    Ibrahim Yel
    Simon S. Martin
    Lukas Lenga
    Jan-Erik Scholtz
    Thomas J. Vogl
    Scherwin Mahmoudi
    International Journal of Computer Assisted Radiology and Surgery, 2023, 18 : 1829 - 1839
  • [23] Development of contrast-enhanced four-dimensional dual-energy CT of hepatocellular carcinoma with PVTT in radiotherapy
    Ohira, Shingo
    Koizumi, Masahiko
    Teshima, Teruki
    CANCER SCIENCE, 2018, 109 : 606 - 606
  • [24] Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen
    Mineka Sato
    Yasutaka Ichikawa
    Kensuke Domae
    Kazuya Yoshikawa
    Yoshinori Kanii
    Akio Yamazaki
    Naoki Nagasawa
    Motonori Nagata
    Masaki Ishida
    Hajime Sakuma
    European Radiology, 2022, 32 : 5499 - 5507
  • [25] Virtual noncontrast images reveal gouty tophi in contrast-enhanced dual-energy CT: a phantom study
    Khayata, Karim
    Diekhoff, Torsten
    Mews, Juergen
    Schmolke, Sydney
    Kotlyarov, Maximilian
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [26] Assessment of thoracic disc degeneration using dual-energy CT-based collagen maps
    Bernatz, Simon
    Hoppe, Alexander Tom
    Gruenewald, Leon David
    Koch, Vitali
    Martin, Simon S.
    Engelskirchen, Lara
    Radic, Ivana
    Bucolo, Giuseppe
    Gotta, Jennifer
    Reschke, Philipp
    Hammerstingl, Renate M.
    Scholtz, Jan-Erik
    Gruber-Rouh, Tatjana
    Eichler, Katrin
    Vogl, Thomas J.
    Booz, Christian
    Yel, Ibrahim
    Mahmoudi, Scherwin
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [27] Assessing Lung Function Using Contrast-Enhanced Dynamic 4D CT and Split Filter Dual-Energy CT for Radiation Therapy Applications
    Miller, J.
    Lawless, M.
    Mittauer, K.
    Wuschner, A.
    Flakus, M.
    Shanmuganayagam, D.
    Meudt, J.
    Huang, J.
    Bayouth, J.
    MEDICAL PHYSICS, 2019, 46 (06) : E408 - E408
  • [28] Radiation Dose Reduction in Contrast-Enhanced Abdominal CT: Comparison of Photon-Counting Detector CT with 2nd Generation Dual-Source Dual-Energy CT in an oncologic cohort
    Wrazidlo, Robin
    Walder, Lukas
    Estler, Arne
    Gutjahr, Ralf
    Schmidt, Bernhard
    Faby, Sebastian
    Fritz, Jan
    Nikolaou, Konstantin
    Horger, Marius
    Hagen, Florian
    ACADEMIC RADIOLOGY, 2023, 30 (05) : 855 - 862
  • [29] Contrast-enhanced CT-based radiomics model for differentiating risk subgroups of thymic epithelial tumors
    Yu, Chunhai
    Li, Ting
    Yang, Xiaotang
    Zhang, Ruiping
    Xin, Lei
    Zhao, Zhikai
    Cui, Jingjing
    BMC MEDICAL IMAGING, 2022, 22 (01)
  • [30] Contrast-enhanced CT-based radiomics model for differentiating risk subgroups of thymic epithelial tumors
    Chunhai Yu
    Ting Li
    Xiaotang Yang
    Ruiping Zhang
    Lei Xin
    Zhikai Zhao
    Jingjing Cui
    BMC Medical Imaging, 22