Performance and feasibility study of a heat pump with modified solar-air source evaporator: Techno-economic analysis for water heating

被引:0
|
作者
Chinnasamy, Subramaniyan [1 ]
Prakash, K. B. [1 ]
Divyabharathi, R. [2 ]
Kalidasan, B. [3 ]
Rajamony, Reji Kumar [4 ,5 ]
Pandey, A. K. [3 ,6 ]
Fouad, Yasser [7 ]
Soudagar, Manzoore Elahi M. [8 ,9 ]
机构
[1] Bannari Amman Inst Technol, Dept Mech Engn, Sathyamangalam 638401, Tamil Nadu, India
[2] Tamil Nadu Agr Univ, Dept Renewable Energy Engn, AEC &RI, Coimbatore 641003, India
[3] Sunway Univ, Res Ctr Nanomat & Energy Technol RCNMET, Sch Engn & Technol, Jalan Univ 5, Petaling Jaya 47500, Selangor Darul, Malaysia
[4] Natl Energy Univ, Univ Tenaga Nas, Inst Sustainable Energy, Jalan IKRAM UNITEN, Kajang, Selangor, Malaysia
[5] SIMATS, Saveetha Sch Engn, Dept Phys, Chennai 602105, India
[6] Uttaranchal Univ, CoE Energy & Ecosustainabil Res, Dehra Dun 248007, Uttarakhand, India
[7] King Saud Univ, Coll Appl Engn, Dept Appl Mech Engn, Muzahimiyah Branch, POB 800, Riyadh 11421, Saudi Arabia
[8] Lishui Univ, Fac Engn, Lishui 323000, Zhejiang, Peoples R China
[9] Era Graph, Dept Mech Engn, Dehra Dun 248002, Uttarakhand, India
关键词
Dual source; COP; Exergy; Heat pump; Carbon credit; Payback period; THERMAL PERFORMANCE; EXPERIMENTAL VALIDATION; ENERGY-CONSUMPTION; SYSTEM; SIMULATION; REFRIGERANTS; EMISSIONS; ASHP;
D O I
10.1016/j.icheatmasstransfer.2024.107795
中图分类号
O414.1 [热力学];
学科分类号
摘要
There is a rising demand for improving and analyzing the potential of alternative designs and operating conditions of heat pumps. The current study explores and reports on the techno-economic analysis (4E - Energy, Exergy, economic and environmental viability) of a Modified Dual Source Heat Pump (MDHP) water heater under various ambient and operating circumstances. There are three functioning modes are presented for operating the system all over the day irrespective of the ambient conditions: dual source with natural convection (MDHP-DN), dual source with forced convection (MDHP-DF), and air-source forced convection (MDHP-AF). The experimental analysis targeted to assess the system's overall performance under diverse design and operating conditions all over the day. The outcomes specify that the average COP of MDHP in dual source with natural convection mode (DN) is 7% and 18% larger than that of dual source with forced convection (DF) and (AF), respectively. The regular daily COP and exergy efficiency of MDHP (with five heat-up cycles per day) are 3.24 and 54.6%, respectively. Furthermore, the investigation into the annual effectiveness of the MDHP involves analyzing simulation studies that take into account the local ambient conditions. According to the results, the MDHP system has a payback period of around 689 days and a lifetime CO2 mitigation savings cost of approximately $178,057 compared to a conventional electric heating system. This inference implies that the suggested MDHP system can be adapted to varying weather conditions, providing active and long-term solutions compared with conventional heat pump water heating systems.
引用
下载
收藏
页数:19
相关论文
共 50 条
  • [1] Heat transfer performance of an integrated solar-air source heat pump evaporator
    Long, Jibo
    Zhang, Ruichao
    Lu, Jiao
    Xu, Fu
    ENERGY CONVERSION AND MANAGEMENT, 2019, 184 : 626 - 635
  • [2] Experiment Study on Heating Performance of Solar-Air Source Heat Pump Unit
    Liu, Fengzhen
    Wang, Liang
    Wang, Qiang
    Wang, Hongfei
    10TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING, ISHVAC2017, 2017, 205 : 3873 - 3878
  • [3] Performance of a solar-air source heat pump system for water heating on different weather conditions
    Xu Guoying
    Zhang Xiaosong
    Yang Lei
    Deng Shiming
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 611 - +
  • [4] Techno-economic Analysis on Water Source Heat Pump System
    Liu Jiayou
    Zhao Yanxin
    ICEET: 2009 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENT TECHNOLOGY, VOL 1, PROCEEDINGS, 2009, : 385 - +
  • [5] Techno-economic analysis of air source heat pump applied for space heating in northern China
    Zhang, Qunli
    Zhang, Lin
    Nie, Jinzhe
    Li, Yinlong
    APPLIED ENERGY, 2017, 207 : 533 - 542
  • [6] Performance analysis and optimization of a solar-air source heat pump heating system in Tibet, China
    Long, Tianhe
    Qiao, Zhenyong
    Wang, Meilin
    Li, Yongcai
    Lu, Jun
    Li, Wuyan
    Zeng, Liyue
    Huang, Sheng
    ENERGY AND BUILDINGS, 2020, 220
  • [7] A simulation study on the operating performance of a solar-air source heat pump water heater
    Xu, Guoying
    Zhang, Xiaosong
    Deng, Shiming
    APPLIED THERMAL ENGINEERING, 2006, 26 (11-12) : 1257 - 1265
  • [8] Techno-Economic Feasibility Study Of Solar Water Heating System In Libya
    Rajab, Zakariya
    Zuhier, Mohammad
    Khalil, Ashraf
    El-Faitouri, Abdulhafed S.
    2017 8TH INTERNATIONAL RENEWABLE ENERGY CONGRESS (IREC), 2017,
  • [9] Experimental Thermal Performance of a Novel Solar-Air Source Heat Pump System for Domestic Water Heating
    Xu, Guoying
    Zhang, Xiaosong
    Deng, Shiming
    Zhang, Yuehong
    6TH INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATING AND AIR CONDITIONING, VOLS I-III, PROCEEDINGS, 2009, : 1984 - 1991
  • [10] A solar-air hybrid source heat pump for space heating and domestic hot water
    Ran, Siyuan
    Li, Xianting
    Xu, Wei
    Wang, Baolong
    SOLAR ENERGY, 2020, 199 : 347 - 359