User-Generated Pseudonyms Through Merkle Trees

被引:2
|
作者
Kermezis, Georgios [1 ]
Limniotis, Konstantinos [1 ,2 ]
Kolokotronis, Nicholas [3 ]
机构
[1] Open Univ Cyprus, Sch Pure & Appl Sci, CY-2220 Latsia, Cyprus
[2] Hellen Data Protect Author, Kifissias 1-3, Athens 11523, Greece
[3] Univ Peloponnese, Dept Informat & Telecommun, Akad GK Vlachou St, Tripolis 22131, Greece
来源
PRIVACY TECHNOLOGIES AND POLICY, APF 2021 | 2021年 / 12703卷
关键词
Data minimisation; General data protection regulation; Merkle trees; Personal data; Pseudonymisation;
D O I
10.1007/978-3-030-76663-4_5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A pseudonymisation technique based on Merkle trees is described in this paper. More precisely, by exploiting inherent properties of the Merkle trees as cryptographic accumulators, we illustrate how user-generated pseudonyms can be constructed, without the need of a third party. Each such pseudonym, which depends on several user's identifiers, suffices to hide these original identifiers, whilst the unlinkability property between any two different pseudonyms for the same user is retained; at the same time, this pseudonymisation scheme allows the pseudonym owner to easily prove that she owns a pseudonym within a specific context, without revealing information on her original identifiers. Compared to other user-generated pseudonymisation techniques which utilize public key encryption algorithms, the new approach inherits the security properties of a Merkle tree, thus achieving post-quantum security.
引用
收藏
页码:89 / 105
页数:17
相关论文
共 50 条
  • [21] Analysing Translators' Language Problems (and Solutions) Through User-generated Content
    Cibej, Jaka
    Gorjanc, Vojko
    Popic, Damjan
    PROCEEDINGS OF THE XVII EURALEX INTERNATIONAL CONGRESS: LEXICOGRAPHY AND LINGUISTIC DIVERSITY, 2016, : 158 - 167
  • [22] User-generated "content":: This is the promised land?
    Crawford, W
    ECONTENT, 2001, 24 (08) : 50 - 51
  • [23] ViComp: composition of user-generated videos
    Bano, Sophia
    Cavallaro, Andrea
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (12) : 7187 - 7210
  • [24] Quality Characteristics for User-Generated Content
    Musto J.
    Dahanayake A.
    Musto, Jiri (jiri.musto@lut.fi), 1600, IOS Press BV (343): : 244 - 263
  • [25] User-Generated Content in Pervasive Games
    Kasapakis, Vlasios
    Gavalas, Damianos
    COMPUTERS IN ENTERTAINMENT, 2018, 16 (01):
  • [26] Tapping the grapevine: User-generated content
    Figallo, C
    Rhine, N
    ECONTENT, 2001, 24 (03) : 38 - +
  • [27] Multimodal Summarization of User-Generated Videos
    Psallidas, Theodoros
    Koromilas, Panagiotis
    Giannakopoulos, Theodoros
    Spyrou, Evaggelos
    APPLIED SCIENCES-BASEL, 2021, 11 (11):
  • [28] WARMING UP TO USER-GENERATED CONTENT
    Lee, Edward
    UNIVERSITY OF ILLINOIS LAW REVIEW, 2008, (05): : 1459 - 1548
  • [29] Predicting Emotions in User-Generated Videos
    Jiang, Yu-Gang
    Xu, Baohan
    Xue, Xiangyang
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 73 - 79
  • [30] Assessing the Quality of User-Generated Content
    Stefan Winkler
    ZTE Communications, 2013, 11 (01) : 37 - 40