EEG alpha band functional brain network correlates of cognitive performance in children after perinatal stroke

被引:0
|
作者
Kavcic, Alja [1 ,6 ]
Borko, Dasa Kocjancic [2 ]
Kodric, Jana [2 ]
Georgiev, Dejan [3 ,4 ]
Demsar, Jure [4 ,5 ]
Soltirovska-Salamon, Aneta [1 ,6 ]
机构
[1] Univ Med Ctr Ljubljana, Univ Childrens Hosp, Dept Neonatol, Bohoriceva 20, Ljubljana 1000, Slovenia
[2] Univ Med Ctr Ljubljana, Univ Childrens Hosp, Bohoriceva 20, Ljubljana 1000, Slovenia
[3] Univ Med Ctr Ljubljana, Dept Neurol, Zaloska cesta 2, Ljubljana 1000, Slovenia
[4] Univ Ljubljana, Fac Comp & Informat Sci, Vecna pot 113, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Arts, Dept Psychol, Askerceva cesta 2, Ljubljana 1000, Slovenia
[6] Univ Ljubljana, Fac Med, Vrazov trg 2, Ljubljana 1000, Slovenia
关键词
Perinatal stroke; Functional brain networks; Functional connectivity; Resting state EEG; Cognitive function; OUTCOMES; ORGANIZATION; REORGANIZATION; ATTENTION;
D O I
10.1016/j.neuroimage.2024.120743
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Mechanisms underlying cognitive impairment after perinatal stroke could be explained through brain network alterations. With aim to explore this connection, we conducted a matched test-control study to find a correlation between functional brain network properties and cognitive functions in children after perinatal stroke. First, we analyzed resting-state functional connectomes in the alpha frequency band from a 64-channel resting state EEG in 24 children with a history of perinatal stroke (12 with neonatal arterial ischemic stroke and 12 with neonatal hemorrhagic stroke) and compared them to the functional connectomes of 24 healthy controls. Next, all participants underwent cognitive evaluation. We analyzed the differences in functional brain network properties and cognitive abilities between groups and studied the correlation between network characteristics and specific cognitive functions. Functional brain networks after perinatal stroke had lower modularity, higher clustering coefficient, higher interhemispheric strength, higher characteristic path length and higher small world index. Modularity correlated positively with the IQ and processing speed, while clustering coefficient correlated negatively with IQ. Graph metrics, reflecting network segregation (clustering coefficient and small world index) correlated positively with a tendency to impulsive decision making, which also correlated positively with graph metrics, reflecting stronger functional connectivity (characteristic path length and interhemispheric strength). Our study suggests that specific cognitive functions correlate with different brain network properties and that functional network characteristics after perinatal stroke reflect poorer cognitive functioning.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task
    Seminowicz, David A.
    Davis, Karen D.
    JOURNAL OF NEUROPHYSIOLOGY, 2007, 97 (05) : 3651 - 3659
  • [42] The influence of deep brain stimulation on the Parkinson's disease brain: functional improvement correlates with increased alpha2 and beta band functional connectivity
    Boon, L.
    Potters, W.
    Hillebrand, A.
    de Bie, R.
    Bot, M.
    Schuurman, R.
    Stam, C.
    van Rootselaar, F.
    Berendse, H.
    MOVEMENT DISORDERS, 2019, 34 : S846 - S847
  • [43] Beta EEG band: A measure of functional brain damage and language reorganization in aphasic patients after recovery
    Spironelli, Chiara
    Manfredi, Mirella
    Angrilli, Alessandro
    CORTEX, 2013, 49 (10) : 2650 - 2660
  • [44] The interrelation between sensorimotor abilities, cognitive performance and individual EEG alpha peak frequency in young children
    Mierau, Andreas
    Felsch, Moritz
    Huelsduenker, Thorben
    Mierau, Julia
    Bullermann, Pola
    Weiss, Britta
    Strueder, Heiko K.
    CLINICAL NEUROPHYSIOLOGY, 2016, 127 (01) : 270 - 276
  • [45] Cognitive performance and poor long-term functional outcome after young stroke
    Synhaeve, Nathalie E.
    Schaapsmeerders, Pauline
    Arntz, Renate M.
    Maaijwee, Noortje A. M.
    Rutten-Jacobs, Loes C. A.
    Schoonderwaldt, Henny C.
    Dorresteijn, Lucille D. A.
    de Kort, Paul L. M.
    van Dijk, Ewoud J.
    Kessels, Roy P. C.
    de Leeuw, Frank-Erik
    NEUROLOGY, 2015, 85 (09) : 776 - 782
  • [46] EEG-Based Brain Network Analysis of Chronic Stroke Patients After BCI Rehabilitation Training
    Zhan, Gege
    Chen, Shugeng
    Ji, Yanyun
    Xu, Ying
    Song, Zuoting
    Wang, Junkongshuai
    Niu, Lan
    Bin, Jianxiong
    Kang, Xiaoyang
    Jia, Jie
    FRONTIERS IN HUMAN NEUROSCIENCE, 2022, 16
  • [47] Functional organization and restoration of the brain motor-execution network after stroke and rehabilitation
    Bajaj, Sahil
    Butler, Andrew J.
    Drake, Daniel
    Dhamala, Mukesh
    FRONTIERS IN HUMAN NEUROSCIENCE, 2015, 9
  • [48] Cognitive correlates with functional outcomes after anoxic brain injury: A case-controlled comparison with traumatic brain injury
    Cullen, Nora K.
    Weisz, Karen
    BRAIN INJURY, 2011, 25 (01) : 35 - 43
  • [49] Developing cognitive workload and performance evaluation models using functional brain network analysis
    Shadpour, Saeed
    Shafqat, Ambreen
    Toy, Serkan
    Jing, Zhe
    Attwood, Kristopher
    Moussavi, Zahra
    Shafiei, Somayeh B.
    NPJ AGING, 2023, 9 (01):
  • [50] The Dynamics of Functional Brain Networks: Integrated Network States during Cognitive Task Performance
    Shine, James M.
    Bissett, Patrick G.
    Bell, Peter T.
    Koyejo, Oluwasanmi
    Balsters, Joshua H.
    Gorgolewski, Krzysztof J.
    Moodie, Craig A.
    Poldrack, Russell A.
    NEURON, 2016, 92 (02) : 544 - 554