A tunable pendulum-like piezoelectric energy harvester for multidirectional vibration

被引:0
|
作者
Wu, Silei [1 ]
Kan, Junwu [1 ,2 ]
Wu, Wenchao [1 ]
Lin, Shijie [1 ]
Yu, Yiyong [1 ]
Liao, Weilin [3 ]
Zhang, Zhonghua [1 ,2 ]
机构
[1] Zhejiang Normal Univ, Inst Precis Machinery & Smart Struct, 688 Yingbin Rd, Jinhua 321004, Zhejiang, Peoples R China
[2] Zhejiang Normal Univ, Key Lab Intelligent Operat & Maintenance Technol, Jinhua 321004, Zhejiang, Peoples R China
[3] Tsinghua Univ, Dept Engn Mech, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Piezoelectric transduction; Vibration energy harvester; Pendulum structure; Multiple direction; Low frequency;
D O I
10.1016/j.susmat.2024.e01094
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Harvesting energy from vibrations using piezoelectric mechanism has attracted much attention for powering wireless sensors over the past decade. This paper proposes a tunable pendulum-like piezoelectric energy harvester for multidirectional vibration (TP-PVEH) to enhance the power generation characteristic, durability, and environmental adaptability of energy harvester. Unlike traditional cantilevered piezoelectric vibration energy harvesters (PVEHs), which typically lowered working frequencies by adding the weight of proof mass at the end of beam or reshaping beam, TP-PVEH employed a pendulum to harness low-frequency vibrations. Moreover, in contrast to typical pendulum-like PVEHs, the pendulum in this design was not mounted at the end of beam but was attached to a radial spherical plain bearing (RSPB) structure, which avoided the irreversible beam damage caused by gravitational force. TP-PVEH utilized simple-pendulum-induced RSPB motion to smoothly pluck piezoelectric beams, subjecting the piezoelectric beams to unidirectional compressive stress only. Meanwhile, the RSPB structure's capability to facilitate multidirectional rotation enabled TP-PVEH to efficiently capture energy from various directions. Theoretical analysis, numerical analysis and experiment tests were conducted to validate the design and examine how excitation and structural parameters influenced on the output performance of TPPVEH. The results demonstrated that the excitation amplitude, excitation angle, proof mass, and mass distance brought significant effects on the output characteristic of TP-PVEH. The working frequency, output voltage and power could be efficiently tuned by the abovementioned parameters. With an excitation amplitude of 3 mm, TPPVEH achieved an optimal output power of 9.81 mW and an output power density of 11.37 mu W/mm3, 3 , operating with a load resistance of 200 k Omega at a frequency of 12.5 Hz.TP-PVEH could power 100 blue LEDs and a calculator. Additionally, the ability of TP-PVEH to charge capacitors further demonstrated its practical power supply capabilities.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Multimodal Multidirectional Piezoelectric Vibration Energy Harvester by U-Shaped Structure with Cross-Connected Beams
    Qin, Hongbo
    Mo, Shuting
    Jiang, Xin
    Shang, Siyao
    Wang, Peng
    Liu, Yan
    MICROMACHINES, 2022, 13 (03)
  • [32] A review of broadband piezoelectric vibration energy harvester
    Xu Z.
    Shan X.
    Xie T.
    Xie, Tao, 2018, Chinese Vibration Engineering Society (37): : 190 - 199and205
  • [33] Micromachined Piezoelectric Energy Harvester with Low Vibration
    Park, Jong C.
    Park, Jae Y.
    ISAF: 2009 18TH IEEE INTERNATIONAL SYMPOSIUM ON THE APPLICATIONS OF FERROELECTRICS, 2009, : 406 - 411
  • [34] Modeling and Simulation of a Piezoelectric Vibration Energy Harvester
    Kundu, Sushanta
    Nemade, Harshal B.
    INTERNATIONAL CONFERENCE ON VIBRATION PROBLEMS 2015, 2016, 144 : 568 - 575
  • [35] Modelling and Verification of Piezoelectric Vibration Energy Harvester
    Hadas, Zdenek
    Lan, Radek
    ADVANCED MECHATRONICS SOLUTIONS, 2016, 393 : 305 - 310
  • [36] Regular and chaotic vibration in a piezoelectric energy harvester
    Grzegorz Litak
    Michael I. Friswell
    Sondipon Adhikari
    Meccanica, 2016, 51 : 1017 - 1025
  • [37] A PIEZOELECTRIC ENERGY HARVESTER WITH VORTEX INDUCED VIBRATION
    Song, Ru-jun
    Shan, Xiao-biao
    Li, Jin-zhe
    Xie, Tao
    Sun, Qi-gang
    PROCEEDINGS OF THE 2015 SYMPOSIUM ON PIEZOELECTRICITY, ACOUSTIC WAVES AND DEVICE APPLICATIONS, 2015, : 322 - 325
  • [38] A Hybrid Piezoelectric and Electrostatic Vibration Energy Harvester
    Madinei, H.
    Khodaparast, H. Haddad
    Adhikari, S.
    Friswell, M. I.
    SHOCK & VIBRATION, AIRCRAFT/AEROSPACE, ENERGY HARVESTING, ACOUSTICS & OPTICS, VOL 9, 2016, : 189 - 195
  • [39] Piezoelectric Vibration Energy Harvester in Electric Vehicles
    Li, Shanshan
    Wu, Zhengbin
    Su, Yikun
    Xi, Kui
    APPLIED ENERGY TECHNOLOGY, PTS 1 AND 2, 2013, 724-725 : 1427 - +
  • [40] Impact-driven piezoelectric energy harvester using a pendulum structure for low-frequency vibration
    Fan, Guifen
    Wang, Yanjiong
    Tian, Feng
    Hao, Mengmeng
    Wen, Yue
    Xu, Yanzhe
    Zeng, FangFang
    Lu, Wenzhong
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2021, 32 (17) : 1997 - 2005