Multiplex, single-cell CRISPRa screening for cell type specific regulatory elements

被引:2
|
作者
Chardon, Florence M. [1 ,2 ]
McDiarmid, Troy A. [1 ,2 ]
Page, Nicholas F. [3 ,4 ,5 ]
Daza, Riza M. [1 ,2 ]
Martin, Beth K. [1 ,2 ]
Domcke, Silvia [1 ]
Regalado, Samuel G. [1 ]
Lalanne, Jean-Benoit [1 ]
Calderon, Diego [1 ]
Li, Xiaoyi [1 ,2 ]
Starita, Lea M. [1 ,6 ]
Sanders, Stephan J. [3 ,5 ,7 ]
Ahituv, Nadav [4 ,5 ]
Shendure, Jay [1 ,2 ,6 ,8 ,9 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Seattle Hub Synthet Biol, Seattle, WA 98109 USA
[3] Univ Calif San Francisco, Kavli Inst Fundamental Neurosci, Weill Inst Neurosci, Dept Psychiat & Behav Sci, San Francisco, CA USA
[4] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Inst Human Genet, San Francisco, CA 94143 USA
[6] Brotman Baty Inst Precis Med, Seattle, WA 98195 USA
[7] Univ Oxford, Inst Dev & Regenerat Med, Dept Paediat, Oxford OX3 7TY, England
[8] Howard Hughes Med Inst, Seattle, WA 98109 USA
[9] Allen Discovery Ctr Cell Lineage Tracing, Seattle, WA 98109 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
ACTIVATION; NEURONS;
D O I
10.1038/s41467-024-52490-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CRISPR-based gene activation (CRISPRa) is a strategy for upregulating gene expression by targeting promoters or enhancers in a tissue/cell-type specific manner. Here, we describe an experimental framework that combines highly multiplexed perturbations with single-cell RNA sequencing (sc-RNA-seq) to identify cell-type-specific, CRISPRa-responsive cis-regulatory elements and the gene(s) they regulate. Random combinations of many gRNAs are introduced to each of many cells, which are then profiled and partitioned into test and control groups to test for effect(s) of CRISPRa perturbations of both enhancers and promoters on the expression of neighboring genes. Applying this method to a library of 493 gRNAs targeting candidate cis-regulatory elements in both K562 cells and iPSC-derived excitatory neurons, we identify gRNAs capable of specifically upregulating intended target genes and no other neighboring genes within 1 Mb, including gRNAs yielding upregulation of six autism spectrum disorder (ASD) and neurodevelopmental disorder (NDD) risk genes in neurons. A consistent pattern is that the responsiveness of individual enhancers to CRISPRa is restricted by cell type, implying a dependency on either chromatin landscape and/or additional trans-acting factors for successful gene activation. The approach outlined here may facilitate large-scale screens for gRNAs that activate genes in a cell type-specific manner. Scalable CRISPRa screening of cis-regulatory elements in non-cancer cell lines has proved challenging. Here, the authors describe a scalable, CRISPR activation screening framework to identify regulatory element-gene pairs in diverse cell types including cancer cells and neurons.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Cell-type-specific resolution epigenetics without the need for cell sorting or single-cell biology
    Elior Rahmani
    Regev Schweiger
    Brooke Rhead
    Lindsey A. Criswell
    Lisa F. Barcellos
    Eleazar Eskin
    Saharon Rosset
    Sriram Sankararaman
    Eran Halperin
    Nature Communications, 10
  • [32] Plant single-cell and single-cell-type metabolomics
    Misra, Biswapriya B.
    Assmann, Sarah M.
    Chen, Sixue
    TRENDS IN PLANT SCIENCE, 2014, 19 (10) : 637 - 646
  • [33] CellWalker integrates single-cell and bulk data to resolve regulatory elements across cell types in complex tissues
    Pawel F. Przytycki
    Katherine S. Pollard
    Genome Biology, 22
  • [34] CellWalker integrates single-cell and bulk data to resolve regulatory elements across cell types in complex tissues
    Przytycki, Pawel F.
    Pollard, Katherine S.
    GENOME BIOLOGY, 2021, 22 (01)
  • [35] Optimized multiplex immunofluorescence single-cell analysis reveals tuft cell heterogeneity
    McKinley, Eliot T.
    Sui, Yunxia
    Al-Kofahi, Yousef
    Millis, Bryan A.
    Tyska, Matthew J.
    Roland, Joseph T.
    Santamaria-Pang, Alberto
    Ohland, Christina L.
    Jobin, Christian
    Franklin, Jeffrey L.
    Lau, Ken S.
    Gerdes, Michael J.
    Coffey, Robert J.
    JCI INSIGHT, 2017, 2 (11)
  • [36] Multiplex viral tropism assay in complex cell populations with single-cell resolution
    Choong Tat Keng
    Ke Guo
    Yu-Chi Liu
    Kimberle Yanyin Shen
    Daryl Shern Lim
    Matthew Lovatt
    Heng Pei Ang
    Jodhbir S. Mehta
    Wei Leong Chew
    Gene Therapy, 2022, 29 : 555 - 565
  • [37] Multiplex viral tropism assay in complex cell populations with single-cell resolution
    Keng, Choong Tat
    Guo, Ke
    Liu, Yu-Chi
    Shen, Kimberle Yanyin
    Lim, Daryl Shern
    Lovatt, Matthew
    Ang, Heng Pei
    Mehta, Jodhbir S.
    Chew, Wei Leong
    GENE THERAPY, 2022, 29 (09) : 555 - 565
  • [38] Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
    Chen, Xi
    Wang, Yuan
    Cappuccio, Antonio
    Cheng, Wan-Sze
    Zamojski, Frederique Ruf
    Nair, Venugopalan D.
    Miller, Clare M.
    Rubenstein, Aliza B.
    Nudelman, German
    Tadych, Alicja
    Theesfeld, Chandra L.
    Vornholt, Alexandria
    George, Mary-Catherine
    Ruffin, Felicia
    Dagher, Michael
    Chawla, Daniel G.
    Soares-Schanoski, Alessandra
    Spurbeck, Rachel R.
    Ndhlovu, Lishomwa C.
    Sebra, Robert
    Kleinstein, Steven H.
    Letizia, Andrew G.
    Ramos, Irene
    Fowler Jr, Vance G.
    Woods, Christopher W.
    Zaslavsky, Elena
    Troyanskaya, Olga G.
    Sealfon, Stuart C.
    NATURE COMPUTATIONAL SCIENCE, 2023, 3 (07): : 644 - +
  • [39] Unraveling keratinocyte gene regulatory networks with single-cell cripsr screening and epigenomic profiling
    Ramanathan, M.
    Rubin, A.
    Parker, K.
    Satpathy, A.
    Greenleaf, W.
    Chang, H.
    Khavari, P.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (05) : S63 - S63
  • [40] Mapping disease regulatory circuits at cell-type resolution from single-cell multiomics data
    Xi Chen
    Yuan Wang
    Antonio Cappuccio
    Wan-Sze Cheng
    Frederique Ruf Zamojski
    Venugopalan D. Nair
    Clare M. Miller
    Aliza B. Rubenstein
    German Nudelman
    Alicja Tadych
    Chandra L. Theesfeld
    Alexandria Vornholt
    Mary-Catherine George
    Felicia Ruffin
    Michael Dagher
    Daniel G. Chawla
    Alessandra Soares-Schanoski
    Rachel R. Spurbeck
    Lishomwa C. Ndhlovu
    Robert Sebra
    Steven H. Kleinstein
    Andrew G. Letizia
    Irene Ramos
    Vance G. Fowler
    Christopher W. Woods
    Elena Zaslavsky
    Olga G. Troyanskaya
    Stuart C. Sealfon
    Nature Computational Science, 2023, 3 : 644 - 657