Qualitative Lipschitz to bi-Lipschitz decomposition

被引:0
|
作者
Bate, David [1 ]
机构
[1] Univ Warwick, Dept Math, Zeeman Bldg, Coventry CV4 7AL, England
来源
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
rectifiable set; bi-Lipschitz decomposition;
D O I
10.1515/agms-2024-0005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that any Lipschitz map that satisfies a condition inspired by the work of G. David may be decomposed into countably many bi-Lipschitz pieces.
引用
收藏
页数:3
相关论文
共 50 条
  • [31] On the Bi-Lipschitz Geometry of Lamplighter Graphs
    Baudier, F.
    Motakis, P.
    Schlumprecht, Th.
    Zsak, A.
    DISCRETE & COMPUTATIONAL GEOMETRY, 2021, 66 (01) : 203 - 235
  • [32] Bi-Lipschitz Characterization of Space Curves
    Fernandes, Alexandre
    Jelonek, Zbigniew
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2023, 54 (03):
  • [33] Bi-Lipschitz parts of quasisymmetric mappings
    Azzam, Jonas
    REVISTA MATEMATICA IBEROAMERICANA, 2016, 32 (02) : 589 - 648
  • [34] Lipschitz constant for bi-Lipschitz automorphism on Moran-like sets
    Guo, Qiu-Li
    Wu, Min
    Xi, Li-Feng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 937 - 952
  • [35] A planar bi-Lipschitz extension theorem
    Daneri, Sara
    Pratelli, Aldo
    ADVANCES IN CALCULUS OF VARIATIONS, 2015, 8 (03) : 221 - 266
  • [36] Lipschitz and Bi-Lipschitz Maps from PI Spaces to Carnot Groups
    David, Guy C.
    Kinneberg, Kyle
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (05) : 1685 - 1731
  • [37] Multiplicity of singularities is not a bi-Lipschitz invariant
    Birbrair, Lev
    Fernandes, Alexandre
    Edson Sampaio, J.
    Verbitsky, Misha
    MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 115 - 121
  • [38] BI-LIPSCHITZ EMBEDDING OF PROJECTIVE METRICS
    Kovalev, Leonid V.
    CONFORMAL GEOMETRY AND DYNAMICS, 2014, 18 : 110 - 118
  • [39] Multiplicity of singularities is not a bi-Lipschitz invariant
    Lev Birbrair
    Alexandre Fernandes
    J. Edson Sampaio
    Misha Verbitsky
    Mathematische Annalen, 2020, 377 : 115 - 121
  • [40] Bi-Lipschitz Characterization of Space Curves
    Alexandre Fernandes
    Zbigniew Jelonek
    Bulletin of the Brazilian Mathematical Society, New Series, 2023, 54