LYAPUNOV EXPONENTS AND SYNCHRONISATION BY NOISE FOR SYSTEMS OF SPDES

被引:0
|
作者
Gess, Benjamin [1 ]
Tsatsoulis, Pavlos [1 ]
机构
[1] Univ Bielefeld, Fak Math, Bielefeld, Germany
来源
ANNALS OF PROBABILITY | 2024年 / 52卷 / 05期
关键词
Systems of stochastic reaction-diffusion equations; Lyapunov exponents; synchronisation by noise; SMALL RANDOM PERTURBATIONS; DYNAMICAL-SYSTEMS; RANDOM ATTRACTORS; MONTE-CARLO; FLUCTUATIONS; MODEL; EQUATIONS; TIME;
D O I
10.1214/24-AOP1690
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Quantitative estimates for the top Lyapunov exponents for systems of stochastic reaction-diffusion equations are proven. The treatment includes reaction potentials with degenerate minima. The proof relies on an asymptotic expansion of the invariant measure, with careful control on the resulting error terms. As a consequence of these estimates, synchronisation by noise is deduced for systems of stochastic reaction-diffusion equations for the first time.
引用
收藏
页码:1903 / 1953
页数:51
相关论文
共 50 条
  • [21] Consistent systems and control of Lyapunov exponents
    Popova, SN
    Tonkov, EL
    DIFFERENTIAL EQUATIONS, 1997, 33 (02) : 226 - 235
  • [22] Lyapunov exponents estimation for hysteretic systems
    Machado, Luciano G.
    Lagoudas, Dimitris C.
    Savi, Marcelo A.
    INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2009, 46 (06) : 1269 - 1286
  • [23] Long controllability of Lyapunov characteristic exponents for systems with simple exponents
    Makarov, EK
    Popova, SN
    DIFFERENTIAL EQUATIONS, 1997, 33 (04) : 496 - 500
  • [24] ASYMPTOTIC ANALYSIS OF THE LYAPUNOV EXPONENTS OF CERTAIN LINEAR HAMILTONIAN-SYSTEMS WITH SMALL NOISE
    TEICHERT, H
    MATHEMATISCHE NACHRICHTEN, 1995, 172 : 291 - 311
  • [25] MOMENT LYAPUNOV EXPONENTS AND STOCHASTIC STABILITY OF COUPLED VISCOELASTIC SYSTEMS DRIVEN BY WHITE NOISE
    Deng, Jian
    Xie, Wei-Chau
    Pandey, Mahesh D.
    JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES, 2014, 9 (01) : 27 - 50
  • [26] CONDITIONED LYAPUNOV EXPONENTS FOR RANDOM DYNAMICAL SYSTEMS
    Engel, Maximilian
    Lamb, Jeroen S. W.
    Rasmussen, Martin
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (09) : 6343 - 6370
  • [27] On the global controllability of lyapunov exponents of linear systems
    S. N. Popova
    Differential Equations, 2007, 43 : 1072 - 1078
  • [28] On the bound of the Lyapunov exponents for the fractional differential systems
    Li, Changpin
    Gong, Ziqing
    Qian, Deliang
    Chen, YangQuan
    CHAOS, 2010, 20 (01)
  • [29] Scaling of Lyapunov exponents of coupled chaotic systems
    Zillmer, R
    Ahlers, V
    Pikovsky, A
    PHYSICAL REVIEW E, 2000, 61 (01): : 332 - 341
  • [30] UNIVERSAL BEHAVIOR OF LYAPUNOV EXPONENTS IN UNSTABLE SYSTEMS
    BONASERA, A
    LATORA, V
    RAPISARDA, A
    PHYSICAL REVIEW LETTERS, 1995, 75 (19) : 3434 - 3437