As the greenhouse effect intensifies, ammonia is garnering increasing attention as a carbon-free fuel. In the transport sector, ammonia-diesel dual-fuel (ADDF) engines are regarded as an effective means of reducing carbon emissions. The objective of this study is to investigate the combustion and emission optimization of an ADDF engine under high load conditions. To this end, an experimental optimization study of different start of diesel injection timing (SODI) and exhaust gas recirculation (EGR) rates was conducted at a load of 18 bar and an ammonia energy ratio of 80 %. The mechanism of heat capacity, dilution, and chemical effects of EGR was also revealed by numerical simulation based on the separated variables method. It was demonstrated that advancing SODI is effective in enhancing combustion efficiency. However, this approach is limited by the upper limit of incylinder pressure and results in higher nitrogen oxides (NOx) emissions, which can be mitigated by the EGR. The heat capacity effect of EGR increases the specific heat capacity and decreases the average temperature. The suppression of the combustion process leads to a reduction in thermal and fuel NOx, but an increase in nitrous oxide (N2O) emissions. The dilution effect of EGR results in insufficient oxygen, which decreases the heat release rate and combustion efficiency. Additionally, the NOx and N2O are significantly reduced. The chemical effect of EGR affects reactive groups and unburned components that accelerate heat release rate and increase accumulated heat release, resulting in significantly higher NOx. The comprehensive effect of EGR results in a decrease in N2O emissions and a significant reduction in thermal and fuel NOx. The EGR and further optimization of SODI enabled the ADDF engine to achieve a gross indicated thermal efficiency of 48.5 % with a load of 18 bar and an ammonia energy ratio of 80 %. In addition, NO emissions were reduced by 32.8 percent and greenhouse gas emissions by 63.3 percent.