Effect of liquid ammonia HPDI strategies on combustion characteristics and emission formation of ammonia-diesel dual-fuel heavy-duty engines

被引:11
|
作者
Zhang, Zheng [1 ]
Di, Liming [1 ,2 ]
Shi, Lei [3 ]
Yang, Xiyu [1 ]
Cheng, Tengfei [1 ]
Shi, Cheng [1 ]
机构
[1] Yanshan Univ, Sch Vehicle & Energy, Qinhuangdao 066004, Peoples R China
[2] Hebei Key Lab Special Carrier Equipment, Qinhuangdao 066004, Peoples R China
[3] Weichai Power Co Ltd, Weifang 261061, Peoples R China
关键词
Ammonia; Diesel; Injection timing; Injection direction; Heavy-duty engine; FLAMES;
D O I
10.1016/j.fuel.2024.131450
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Reducing carbon emissions from internal combustion engines has become a crucial topic due to the pressure brought about by global warming. Ammonia, a carbon-free fuel, has significant potential for heavy-duty diesel engine applications. However, the laminar flame speed of ammonia fuel is relatively slow, resulting in suboptimal combustion performance. Therefore, the present study focuses on ammonia-diesel dual-fuel heavy-duty engines. A novel liquid ammonia high-pressure direct injection (HPDI) strategy has been developed to address the challenges associated with poor combustion performance and increased unburned ammonia emissions in ammonia-diesel dual-fuel internal combustion engines. Firstly, a three-dimensional numerical simulation method was utilized to establish and verify a model of a heavy-duty internal combustion engine that incorporates HPDI of liquid ammonia. Afterward, numerical studies comparing the engine's combustion and emission characteristics are conducted with varied ammonia energy fractions, liquid ammonia injection timings, and liquid ammonia injection directions. The results indicate that, compared to the pure diesel mode, the novel liquid ammonia HPDI strategy can alter the combustion mode, significantly improving fuel-air mixture efficiency. This leads to more thorough combustion. After replacing 80% of the fuel energy input with ammonia, there is still an increase of 8.9% in indicated mean effective pressure and a 10.6% improvement in indicated thermal efficiency. Moreover, modifying the HPDI strategy reduces greenhouse gas emissions effectively, and due to the thermal de-NOx reaction, there is a notable decrease in NOx emissions. Furthermore, by altering the liquid ammonia injection timing and direction, finer control of fuel combustion and pollutant generation can be achieved, thereby reducing unburned ammonia emissions in conditions of high ammonia energy fractions.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Characteristics of high-pressure liquid ammonia sprays and combustion process in ammonia/diesel HPDI dual-fuel engines
    He, Xu
    Liu, Yalong
    Zhang, He
    Bi, Sinan
    Xu, Kai
    Zhao, Jin
    JOURNAL OF THE ENERGY INSTITUTE, 2025, 120
  • [2] Combustion and Emission Characteristics of an Ammonia-Diesel Dual-Fuel Engine under High Ammonia Substitution Ratios
    Zhang, Shouzhen
    Yang, Rui
    Tang, Qinglong
    Lv, Zhijie
    Liu, Haifeng
    Yue, Zongyu
    Yao, Mingfa
    ENERGY & FUELS, 2025, 39 (13) : 6559 - 6571
  • [3] A quantitative study on the combustion and emission characteristics of an Ammonia-Diesel Dual-fuel (ADDF) engine
    Pei, Yiqiang
    Wang, Decheng
    Jin, Shouying
    Gu, Yuncheng
    Wu, Chunling
    Wu, Binyang
    FUEL PROCESSING TECHNOLOGY, 2023, 250
  • [4] An investigation into particulate emission and the formation mechanism of soot precursors in ammonia-diesel dual-fuel engines
    Shi, Taifeng
    Pei, Yiqiang
    Jin, Shouying
    Zi, Zhenyuan
    Zhang, Fan
    Wu, Binyang
    FUEL, 2025, 391
  • [5] Experimental investigation on N2O emission characteristics of ammonia-diesel dual-fuel engines
    Liu, Yi
    Cai, Kaiyuan
    Qi, Yunliang
    Chen, Qingchu
    Chen, Hu
    Wang, Zhi
    INTERNATIONAL JOURNAL OF ENGINE RESEARCH, 2025,
  • [6] Flame characteristics and abnormal combustion of ammonia-diesel dual-fuel engine with considering ammonia energy fractions
    Chen, Lin
    Zhao, Wenkai
    Zhang, Ren
    Wei, Haiqiao
    Jiaying, Pan
    APPLIED THERMAL ENGINEERING, 2024, 245
  • [7] Insights into the combustion characteristics, emission formation sources, and optimization strategy of an ammonia-diesel dual-fuel engine under high ammonia ratio conditions
    Jin, Zhuoying
    Mi, Shijie
    Zhou, Dezhi
    Zhu, Jizhen
    Schirru, Andrea
    Zhao, Wenbin
    Qian, Yong
    Lucchini, Tommaso
    Lu, Xingcai
    APPLIED ENERGY, 2024, 373
  • [8] Parametric analysis and optimization of the combustion process and pollutant performance for ammonia-diesel dual-fuel engines
    Shi, Cheng
    Zhang, Zheng
    Wang, Huaiyu
    Wang, Jingyi
    Cheng, Tengfei
    Zhang, Liang
    ENERGY, 2024, 296
  • [9] Combustion and emission characteristics of ammonia-diesel dual fuel engine at different altitudes
    Nie, Xuexuan
    Bi, Yuhua
    Shen, Lizhong
    Lei, Jilin
    Wan, Mingding
    Wang, Zhengjiang
    Liu, Shaohua
    Huang, Fenlian
    FUEL, 2024, 371
  • [10] The influence of exhaust gas recirculation on combustion and emission characteristics of ammonia-diesel dual-fuel engines: Heat capacity, dilution and chemical effects
    Jin, Shouying
    Zi, Zhenyuan
    Yang, Puze
    Zhang, Junhong
    Wu, Binyang
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 117