Electrochemical and bioelectrochemical treatment of steam-assisted gravity drainage water

被引:0
|
作者
Nwanebu, Emmanuel [1 ]
Tartakovsky, Boris [1 ]
Wang, Xiaomeng [2 ]
Jugnia, Louis-B. [1 ]
机构
[1] Natl Res Council Canada, Energy Min & Environm Res Ctr, 6100 Royalmount Ave, Montreal, PQ H4P 2R2, Canada
[2] Nat Resources Canada, CanmetENERGY Devon, 1 Oil Patch Dr, Devon, AB T9G 1A8, Canada
关键词
Bioelectrochemical degradation; NiCo-oxide; Naphthenic acid removal; MICROBIAL ELECTROLYSIS CELLS; NAPHTHENIC ACIDS; DEGRADATION; IMPACT;
D O I
10.1016/j.electacta.2024.144768
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
This study compares electrochemical and bioelectrochemical approaches for treating Steam-Assisted Gravity Drainage (SAGD) water. Electrochemical treatment tests were carried out at applied voltages (Vap) of 1.4, 2.0, and 2.5 V. Bioelectrochemical treatment in a Microbial Electrolysis Cell (MEC) was conducted at the same applied voltages with microaeration of both electrode compartments. The two treatment approaches were thereafter combined in a continuous flow setup that consisted of an electrochemical cell (EC, Vap = 2.5 V) followed by MEC (Vap = 1.4 V). Chemical oxygen demand (COD), naphthenic acid, dissolved metals, and metalloid concentrations of SAGD water were substantially reduced after all treatments, thereby rendering the treated water less toxic according to ecotoxicological tests. However, the MEC treatment was more energy efficient resulting in the lowest specific energy consumption (SEC) value of 5.2 kWh/kgCOD. By replacing a Ti/IrO2-oxide current collector in the MEC with a custom-made Ti/NiCo-oxide mesh, the COD removal efficiency improved by 30%. The results suggest that a MEC equipped with Ti/NiCo-oxide current collector can provide cost-efficient treatment of SAGD water.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] WELLBORE FLOW RESISTANCE IN STEAM-ASSISTED GRAVITY DRAINAGE
    ONG, TS
    BUTLER, RM
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1990, 29 (06): : 49 - 55
  • [22] A NEW APPROACH TO THE MODELING OF STEAM-ASSISTED GRAVITY DRAINAGE
    BUTLER, RM
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1985, 24 (03): : 42 - 51
  • [23] The effect of fractures on the steam-assisted gravity drainage process
    Bagci, S
    ENERGY & FUELS, 2004, 18 (06) : 1656 - 1664
  • [24] Organic bases as additives for steam-assisted gravity drainage
    Brame, Sean D.
    Li, Litan
    Mukherjee, Biplab
    Patil, Pramod D.
    Potisek, Stephanie
    Nguyen, Quoc P.
    PETROLEUM SCIENCE, 2019, 16 (06) : 1332 - 1343
  • [25] Cracked Naphtha Coinjection in Steam-Assisted Gravity Drainage
    Al-Murayri, Mohammed T.
    Maini, Brij B.
    Harding, Thomas G.
    Oskouei, Javad
    ENERGY & FUELS, 2016, 30 (07) : 5330 - 5340
  • [26] Dimethyl Ether as an Additive to Steam for Improved Steam-Assisted Gravity Drainage
    Sheng, Kai
    Okuno, Ryosuke
    Wang, Mingyuan
    SPE JOURNAL, 2018, 23 (04): : 1201 - 1222
  • [27] Steam-injection strategy and energetics of steam-assisted gravity drainage
    Gates, Ian D.
    Kenny, Joseph
    Hernandez-Hdez, Ivan L.
    Bunio, Gary L.
    SPE Reservoir Evaluation and Engineering, 2007, 10 (01): : 19 - 34
  • [28] Impact of steam trap control on performance of steam-assisted gravity drainage
    Gates, Ian D.
    Leskiw, Christopher
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2010, 75 (1-2) : 215 - 222
  • [29] Steam-injection strategy and energetics of steam-assisted gravity drainage
    Gates, Ian D.
    Kenny, Joseph
    Hernandez-Hdez, Ivan L.
    Bunio, Gary L.
    SPE RESERVOIR EVALUATION & ENGINEERING, 2007, 10 (01) : 19 - 34
  • [30] Drilling and completion for steam-assisted gravity drainage (SAGD) operations
    Nzekwu, B
    JOURNAL OF CANADIAN PETROLEUM TECHNOLOGY, 1997, 36 (05): : 8 - &